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The perturbative configuration interaction using strictly localized molecular orbitals, called 
the modified PCILO method, has been applied in this communication for the calculations of the 
energy terms of 15 small molecules up to the third order of the perturbation theory. For this 
method the use of the Rayleigh-Schr6dinger many-body perturbation theory with the Moller­
-Plesset type of the Hamiltonian partitioning is characteristic. On the CNDO/2 and INDO 
level of approximations the strictly localized molecular orbitals have been constructed by solving 
the modified 2 X 2 Roothaan's equations. From the zeroth order ground-state wave function 
the charge distributions, dipole moments and carbon 13- proton nuclear spin-spin coupling 
constants have been calculated. Results show that the chemical formula, represented with the 
zeroth order of the perturbation theory, is a good order of the approximation for the study of the 
molecule. For diatomic molecules the equilibrium interatomic distances and harmonic force 
constants have been calculated up to the third order of the perturbation theory. The second 
order of the perturbation theory provides results which are very near to the MO-LCAO-SCF 
calculations. The main advantage of the PCILO method lies in much saving of the computing 
time. 

The PCILO method (Perturbative Configuration Interaction using Localized Orbitals) is based 
on the concept that corresponds to the looking at the molecule as it would be built up from 
"two-centers, two-electron fragments" (localized chemical bonds) in the mutual interaction. 
This interaction is treated by the perturbation theory (PT). The use of PT is a very effective 
and powerful way to transform a rather poor basis of localized orbitals to the good molecular 
wave function including the electron delocalization and correlation. 

The PCILO method was developed on two different approaches. The principal difference 
between them lies, of course, in the application of the perturbation theory. The original PCILO 
method was formulated by Malrieu and coworkers l

-
4

; they preferred the use of the Epstein­
-Nesbet (EN) type 5,6 of the partition in the Hamiltonian partitioning scheme. The modified 
PCILO method7 - 9 , in an accord with ref. IO

, exploits the Moller- Plesset (MP) type ll of the 
Hamiltonian partitioning and it is strictly derived from the diagramatic Rayleigh-Schr6dinger 
many-body perturbation theory (MBPT) in contrast to the original PCILO, where the diagramatic 
representation of individual energy terms has only the illustrative meaning. 

The choice of the type of the Hamiltonian partitioning is a crucial point that has to be described 
in more details. It is well kriown that from the four most investigated many-body perturbation 
techniques: Reyleigh- SchrOdinger with the Moller-Plesset (RS-MP) or Epstein-Nesbet (RS-EN) 
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partitioning and Brillouin-Wigner with the Moller-Plesset (BW-MP) or Epstein-Nesbet (BW-EN) 
partitioning, only the simplest RS-MP procedure is invariant with respect to the mixing of degene­
rate orbitals. The RS-MP procedure also provides the correct (linear) dependence of the cor­
relation energy on the number of particles. Therefore, it is preferred as a general unambiguous 
perturbation technique12

. According to Claverie and coworkers13 •14 the RS-EN procedure 
causes some lower energy with respect to the RS-MP procedure for the series of polyenes. These 
authors have preferred the RS-EN procedure. However, Bartlett and Shavitt15 on ah initio 
MBPT calculations have shown that the MP series converges faster than EN series in higher 
orders, unlike to the expectations of ref. 13

•
14

• Further, Ostlund and Bowen12 have shown that 
the RS-EN procedure offers also incorrect potential curves in 2nd order of PT. Finally, the 
RS-EN, BW-MP and BW-EN procedures all include the higher-order terms or diagrams in the 
given order of PT and they are not directly applicable in the framework of the second-quantiza­
tion formalism. However, the modified partitioning procedures with a "denominator shift" 
approach were proposed 15 -19; they can be useful on the second-quantization formulations 
of the many-body perturbation theories but applications of these methods should be still studied. 

The essential features of the PCILO method in its original and modified version are exactly 
the same: the construction of a likely fully localized zeroth order determinant, and of a basis 
of orthogonal excited determinants from an a priori set of fully localized bond MO's, perturbative 
obtention of the ground-state wave function and energy from the CI matrix or MBPT. To the 
significant improvements in the modified PCILO method belong 7 : (i) the introduction of the 
INDO Hamiltonian approximation into the PCILO method; (ii) the extension of the method 
on open shell systems (in UHF approach); (iii) the extension of the applicability of the method 
on compounds which consists from H to Br atoms including transition metals. The use of EMOA 
hybrid atomic orbitals instead of Del Re's ones and the solution of 2 X 2 Roothaan's equations 
instead of the bond-polarity parameter's optimization are minor modifications used here. It 
may be mentioned that also the original PCILO method was recently extented on the INDO 
Hamiltonian approximation2o• However, due to the different choice of the Hamiltonian par.H­
tioning in the perturbation technique the one-to-one correspondence between the original and 
modified PCILO methods does not exist. 

In this paper the modified PCILO method is formulated up to the 3rd order of PT 
for the energy. Method is tested on the ground of two groups of criteria: (i) the zeroth 
order wave function is tested in terms of charge distribution, dipole moments, 
carbon 13- proton coupling constants and the "localization defect" (that represents, 
the deviation in the energy with respect to the SCF energy); (ii) the convergence 
of the used perturbation theory is examined in terms of the energy, equilibrium 
interatomic distances, harmonic force constants and curves of the adiabatic potential 
up to the 3rd order of PT. Results are compared, as possible, with those obtained 
by MO-LCAO-SCF and original PCILO methods. 

Strictly Localized Molecular Orbitals 

It is well known that in the Hartree-Fock equations for molecular orbitals (MO) 
the off~diagonal part of the Lagrangian multiplier'S matrix must be fixed by additional 
conditions21. The most common canonical fixation in the MO-LCAO-SCF method 
corresponds to the choice of MOs which are rather delocalized throughout the mole-
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cular skeleton. Another well-known fixations which well preserve the ground-state 
electronic energy, E~cF, correspond to the choice of intrinsicJy localized MOs, 
according to Ruedenberg's21. Boys,22 or von Niessen's23 localization criteria. Howe­
ver, these orbitals are not localized strictly; they have the nOll-zero components 
from more than two atoms, in general. Maintaining strictly localized (two-center) 
molecular orbitals corresponds to the introduction of some additional approximation 
into Hartree-Fock equations. These externally localized MOs produce the ground­
state electronic energy, Eo, which is to some extent higher than the energy E~CF. 
As the strictly localized molecular orbitals (SLMO) are chosen with respect to the 
chemical formula of a molecule, the corresponding ground-state wave function, 
IcPo) , (the single Slater determinant) is a good order of approximation for the study 
of the molecule. Classical theoretical chemistry and the studies on the localization 
of the self-consistent-field orbitals provide a large justification for this approach24. 

A pair of SLMOs associated with i-th chemical bond: one bonding SLMO, Ii) , 
and one antibonding SLMO, li* ) , let be expressed in the form of a linear combina­
tion of a pair of hybrid atomic orbitals (HAO): 

(1) 

(2) 

The basis of HAOs, {tp~}, is built up from atomic orbitals, {X~}: 

A 

ItL) = IJ'~ = La~.rX~ , (3) 
r 

where the hybridization coefficients, a~.r' on all A-th centres in a polyatomic mole­
cule by EMOA method25 •26 can be obtained. To describe any bonding situation 
with respect to the chemical formula of the molecule, it is suitable to introduce 
a discrete topological function, I(A, tL) on the sets of atomic indices, A, and indices 
of HAOs on A-th centre, tL; the value of the topological function is equal to the 
ordering number of i-th chemical bond: I(A, tL) = i (Fig. 1). This function enables 

FIG.l 

The Numbering System for the Definition 
of the Topological Function leA, Jl) in a Mole­
cule 

o Atom, ~ HAO, ----- bond. 
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the convenient selection of a pair of HAOs, 'I'~ = I/L> and 'I'~ = Iv>, which are 
combined into a pair of SLMOs on i-th bond, on the condition: f(A, /L) = i = 

= feB, v). The lone lobes (non-bonding HAOs) are regarded as non-connected 
bonds for which the bonding partners do not exist. 

In Appendix A, the modified 2 x 2 Roothaan's equations for expanding coeffi­
cients, bilJ, have been derived: 

(4) 

which are fulfiled for all i-th bonds: i = (1 - OA,B) OC(A,IJ),f(B,y) and they have the 
simple explicit solutions. These equations fully correspond to a local Brillouin's 
theorem which states: 

(il Fli*> = 0.* (5) 

In Eq. (4), 

C 0 

"F~ = {(/LAI hh> + L L lI(,"pf.? + P pf.?) (/LAVB 1).&0) -
C,Ol. (J 

(6) 

is the matrix element of the one-electron effective Fock operator, F, in the basis _ 
of HAOs; the symbol x designes a;- or 13- set of SLMOs in the unrestricted open shell 
approach. The charge-density (bond-order) matrix elements "P~~ are defined as 

(7) 

where Wi is the occupation number of i-th bonding (wi'" for antibonding) strictly 
localized molecular spinorbital with a;- or f3-electron. 

For the next consideration we introduce the ZDO approximation on the basis 
of AOs. In effect of this approximation, the overlap integrals of HAOs, SIJY' in Eq. (4) 
are neglected. Further, the non-zero two-electron integrals in the HAO's basis are: 

The used convention for the integrals is: 

(ilhlj) = I(III"(I) h(l) (IIj(l)d'l"l 

(ij I kl) = (ik I j/) = II(III"(l) (IIt(2) l/r12 (liP) (111(2) d'l"l d'l"2 

(ij II kl)A = (ijl kl) - (ijllk) 

(ij II kl)c = 2(ij I'kl) - (ij Ilk) 
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(i) the bicentric integrals 

A B 

(J1.AAA I VBO"B) = ~a~,ra~,r ~a~,sa:'S(rArA I SBSB) (8) 

(ii) the monocentric integrals 

A 

(J1.AAA I V AO" A) = I a~,ra~'la~'Sa~u(rt I su) (9) 
r,s.t,u 

(in CNDO approach r = t and S = u). Thus, the matrix elements of the Fock 
operator in HAO's basis are simplified as: 

A 

XFX" = <J1.AI hIJlA> - IXP~~(JlAVA I VAflA) + 
B 

+ L I(,"P~~ + IlP~~)(J1.AflA I VB VB) (10) 
B v 

A B 

XF~~ = {<J1.AI hlva> - L IXP~:(JlAAA I VBO"B) bf(A,).),f(B,,,)} x 
). " 

(11) 

CNDO/2 Hamiltonian Approximation 

The well-known CNDO/2 parametrization scheme on the basis of AOs can be 
applied. Two different cases: the s-p or s-p-d and the d-s-p valence basis 
must be distinguished. 

(i) s- p or s- p-d valence basis: The matrix elements <rAI hlsB> using the stan­
dard Pople's approach27 may be evaluated; for the elements Na-Cl the parametriza­
tion according to Santry and Segal28 is convenient and for the elements Ge-Br 
the parameters derived by Hase and Schweig29 can be used. As the two-electron 
integrals (rArA I SBSB) with the mean value ')lAB are approximed, due to the ortho­
gonality condition for HAOs, the two-electron integrals do not depend on the hybridi­
zation: 

(12) 

Thus, the large simplifications of the formulae (10) and (11) are allowed: 

B 

xFX" = <JlAI hIJlA> + L')IAB I("P~~ + Ilp~~) - ')IAA xPX" (13) 
B v 
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where 
A B 

<fLAI hivn) = L La~, ra~,s< rAI hlsB) • (15) 

The large simplification also for two-electron integrals in SLMO's basis is obtained; 
the non-zero charge distributions are only Iii), lii*) and li*i*), e.g. the non-zero 
integrals are of the type: 

(t~} {~} I L~} {~}). 
Further, an integral in SLMO basis is composed of from 4 (or less than 4) terms 
expressed in the basis of AOs. For the orbital energies there are valid: 

a,p oce,? 

-(i"i~ I i:i,,)i, .. eocc + L L (i"i" I k'lk'1) (16) 
1) kIf 

(17) 

where the symbol occq means the occupied molecular orbitals for electrons wi1.h 
l1-spin. 

(ii) d-s- p valence basis: The parametrization according to Clack, Hush and 
Yandle30 is convenient in this case for transition metals Sc-Cu. As the two-electron 
integrals depend on the principal quantum number of the AOs considered, the inte­
grals: YAB(S, S), YAB(S, D), YAB(D, S) and YAB(D, D) must be considered. Thus the 
transformations (8), (9) and the formulae (10), (11) must be used. 

INDO Hamiltonian Approximation 

The standard Pople's approach31 ,32 for s- p basis of AOs is convenient in this case. 
The formula (10) is simplified as 

B 

"F~: = <fLAI hlfLA ) + L }'AB L("~~ + ~ P~~) + 
B*A v 

A 

+ ~[(Cl p~vA + ~ P~:-) (fLAIlA I V A VA) - "P~vA(fLA V A I v AfLA)] (18) 

and for the off-diagonal elements of the Fock operator the formula (14) is useful. 
In the d - s - p basis for elements Sc-Cu the parametrization according to Clack33 

Collection Czechoaloil. Chern. Commun. [Vol. 44) (1979) 



Hamiltonian Approximations in the Modified PClLO Method 3047 

can be used; the transformations (8), (9) and the formulae (10), (11) must be used 
in this case. Notice, that in the original Clack's approach only the number of 235 
monocentric two-electron integrals of the type (rr I ss) and (rs I rs) is considered, 
since the total number of non-zero monocentric integrals on each atom is 735 34

• 

For example, the integrals (PXdyZ I PXdyz) and (PXdyZ I pyd xz) are equal in their values, 
but in the original Clack's approach the second one is neglected. However, the con­
sideration with all monocentric two-electron integrals in d - s - p basis is not a large 
problem; the semiempirical parametrization scheme for all of these integrals is 
described in35

• 

ApPLICATION OF THE MANy-BODY PERTURBATION THEORY 

In the Rayleigh-Schrodinger many-body perturbation theory36,37 the electronic 
Hamiltonian His splitted into unperturbed Hamiltonian Ho and the perturbation HI' 
If the Moller-Plesset type of the Hamiltonian partitioning is applied 11, they take 
the form: 

Ho = <cPol HlcPo) + Lei N[Xt XI] (19) 
i 

HI = I(1- c5 ij) <il FID N[Xt X j ] + 
i,j 

+ t I <ij II kl )A N[Xt xt XIXk] • (20) 
i,i,k,1 

Here, 
oee 

<iI Flj) = <il hiD + L <ik II jk ) A (21) 
k 

is the matrix element of the one-electron effective Fock operator in the basis of mole­
cular spinorbitals; 

(22) 

is the one-electron orbital energy; the symbol oee means the occupied spinorbitals 
included in the unperturbed ground-state eigenvector IcPo) , (vir means the unoc­
cupied, virtual spinorbitals); N[ ... ] is the normal product of the creation, xt, 
and anihilation, Xj' operators. With these definitions, the ground-state electronic 
energy, E~l, is given by Goldstone's linked cluster expansion38

: 

where the subscript Link indicates that only linked diagrams are to be included, in the 
framework of the diagraniatic MBPT. The first terms of the expansion (23) are: 
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(i) the zeroth order energy 

E&O) = <cPol HolcPo) = t I«il hli) + Bi) (24) 
I 

(ii) the first-order correction 

(25) 

(iii) the second-order correction 

where 

E~~m = L1 = I I(FiaYIDia (27) 
i a 

(28) 

(iv) the third-order correction 

E(3) - <cp I H 1 H 1 H IcP ) - E(3) E(3) E(3) o - 0 1 (0) 1 (0) 1 0 - m-m + m-b + b-b, 
Eo - Ho Eo - Ho 

(29) 
where 

oce vir vir oce 

= I IFia/Dia{IFacFe;/Die - I FakFk;jDka} (30) 
i a c k 

oce vir 

= I I<ij II ab)A/Diajb{FiaFjb(3/Djb + l/Di.) -
i,j a,b 

oee 
- [I«ij" kb)AFka/Dka + !<kj" ab)AFik/Dkajb)] + 

k 

vir 

, + [~«Cj" ab )AFic/Die + !<ij" Cb)AFaeIDiejb)]} (31) 
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occ vir 

E~32b = L14 + L 15 + L 16 = L L(ij II ab ) A/D iUjb X 
i,j B,b 

X {I I(cb II kj ) A (ka II Ci ) A/DkCjb + 
k c 

+ tI(ab II cd ) A ( cd II ij)A/DiCJd + 
c,d 

occ 

+ t L ( ab II kI )A (kIll ij)A/DkBlb} . (32) 
k,l 

~~~ 
~5 e))L

6, ~ 
¢f ~9 ~'0 

L11 j L12 L13 

~ «? ~ j b 
L14 L15 Lt6 

Flo. 2 
Linked Antisymmetrized Diagrams up to the Third Order of MBPT 
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In Eqs (27)-(32), the symbols L 1, ••• , L 16 designe the linked antisymmetrized 
diagrams (Fig. 2), where the rules for evaluating of these diagrams are collected 
in Table 1. Integrating over the spin-coordinates in Eqs (24)-(32), the separate 
formulae for the closed shell and the unrestricted open shell systems can be easily 
derived (Appendix B). 

RESULTS 

Calculations presented in this paper are based on three fundamental steps: 

(i) the construction of the basis of HAOs by the EMO A method; calculations of parti­
cular binding energies and the molecular binding energy in this approximation; 

(ii) the construction of SLMOs using CNDOj2 and INDO Hamiltonian approxima­
tions in the modified 2 x 2 Roothaan's equations; calculation~ of the zeroth-order 
ground-state energy, charge distributions and the molecular dipole moment; 
(iii) the calculation of the energy terms up to the 3rd order of MBPT. 

Calculations were performed for 15 small molecules using the valence s- p basis 
of Slater AOs (with the exponent for the hydrogen orbital ~H = 1'2). In the individual 

TABLE I 

Rules for Evaluating of Linked Antisymmetrized Diagrams 

1. Label each diagram with general "hole" (i,j, k, f) and "particle;' (a, b, c, d) indices. 

2. The numerator of the diagram is obtained by the product of one-electron integrals 
Fij = (1 - 0ij) (i I F I j) (if any) and of antisymmetrized two-electron integrals (ij I kl) A 

(Fig.3). 

3. The denominator of the diagram is given by a product of terms LDia = Lei - ea where p 
p p 

is a number of pairs of "hole" (i) and "particle" (a) lines between each two vertices 
(Diajb = Dia + DjJ. 

4. Sum the ratio tnumerator/denominator) .over all "hole" and "particle" indices. 

5. The sign of the diagram is given by (_l)h + 1 where h is the number of "hole" lines and I 
is the number of continuous lines forming the closed loops (the fermion loops are designed 
on Fig. 2). 

6. Multiply the diagram by a factor 1/2 for each pair of "equivalent" lines. An equivalent pair 
of lines is defined to be two lines beginning at one vertex and ending at another and going 
in the same direction (e.g. diagrams L s' L9, LI0' L 11 , L 1Z ' L 13 have one pair, Lz two pairs 
and L 14, L 16 three pairs). 
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molecules following bonding models were considered: (i) the bonding model with (i­

and tr-bonds: Li ==:FI, I = Be=I, IC ==:OI, CH2 = Q and IO~OI (unpaired electrons 
occupy the antibonding SLMOs); (ii) the bonding model with (i-bonds only: Li- H, 
H-II, Li- II, II-Be- II, H20, NH3 , CH4 , CH3 F, CH 2 F 2 , CHF3 , CF4 and 
CH3 CH3 • 

Hybrid Atomic Orbitals and Binding Energies by EMOA Method 

In the EMOA (Extended Maximum Overlap Approximation) method2 5
•
26 the parti­

cular binding energy, E~:~, that corresponds to a chemical bond, is defined as 

(33) 

and for the molecular binding energy, e, it is valid: 

A B 

e = ! I I IE~:~(1 - bA,B) b f (A'I1),f(B,v)' (34) 
A,B 11 v 

where K~:~ are the semiempirical weighting parameters transferable from one mole­
cule to another. 

The calculated hybridization on given atoms in spx form is listed in Table II. 
The deviation angles of th\:! direction of HAOs from the bond directions have been 
also calculated and they are included in Table II, too . Notice, that in the series 
of the molecules CH3F, CH2F 2, CHF 3 and CF4 the particular binding energies of 
C-H and C-F bonds increase. It is in a good harmony with the observable thermal 
stability of trihalogen methanes in contrast to monohalogen methanes. Calculated 
values of the particular binding energies: E~,H ~420, E~ ,F ~460, E;'c ~320, 
E~'o ~570 and E;'o ~220 (kJ/mol) are in an agreement with expected stabilities 
of these bonds39 - 41 • Calculated molecular binding energies are in remarkable 
agreement with the experimental ones (Table II.). 

Charge Distributions 

The elements of the total charge-density (bond-order) matrix, PI1V = aPI1V + Ilpl1v, 

and the atomic charges have been calculated from SLMOs and for a set of selected 
molecules they are collected in Table III. The trinity of the elements: P~:, P~, P~~ 
gives the information about the polarity of corresponding bond. 
i In the series of the molecules CH4 , CH3F, CH2F 2, CHF 3 and CF4 the positive 
atomic charge on the carbon atom increases and the positive atomic charge on hydro­
gen atom also increases. It is in good agreement with the classical chemical assump­
tions, according to which the negative electron-withdrawing effect of the fluorine 
extends throughout the molecular skeleton with a decreasing intensity: 
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6- 6+ 60+ 

F+-C+-H. 

In the given series, the negative atomic charge on fluorine decreases and the polarity 
of the C-F bond also decreases. It is in an agreement with the ideas about the com­
peting effect of electronegative substituents in manifold substitued molecules. Notice, 
that our calculated charge distributions are in a rough disagreement with the ori­
ginal Pople's CNDO/2 and INDO calculations27

, which are based on cannonical 
MO-LCAO-SCF approach. Pople's calculations show that a "charge alternation" 
may be characteristic of the inductive effect: 

0- 6+ 66-

F-C-H, 

or in larger molecules 
3- 6+ 66- 60+ 006-

X-C-C-C-C .... 

TABLE II 

The Calculated Hybridization in spx Form, Deviation Angles of HAOs from Bonds (0), Particular 
Binding Energies E~:~ (kljmol) and Molecular Binding Energy 8 (kljmol) by EMOA Method" 

Bond spx on atom Deviation 
Molecule EA,B 

A-B A B A B 
II ,v 

calc. exPt~ 

CH3F C-H 2-699 1·81 416·9 1697-4 1682·0 
C-F 4·293 0·593 446·6 

CH2 F 2 C-H 2-440 2·45 420·6 1768·2 1762·0 
C-F 3·777 0·577 1·47 0·50 463·5 

CHF3 C-H 2·184 1·48 0·52 421·7 1 868·3 1 867-8 
C-F 3-374 0·559 481·8 

CF4 C-F 3·000 0·554 

CO C-O 1-172 0·457 59% 
n:C-O 239'9 

CH2 0 C-H 1'946 2·21 417·5 1593'5 1516·3 
C-O 2·113 0·512 553-3 

n:C-O 205·3 

CH3CH3 C-H 0·510 0·86 417·0 
C-C 0·469 0·469 320·6 

CI Paramaters used in the EMOA method (kJ/mo1): K;·H = 610'3507, K;·F = 852'9078, K;'c = 
= 503'7407, K;'O = 753'1441, K;'O = 933'5052. b Experimental binding energies have been 
evaluated from standard molar ellthalpies offormatiollllHf~298 by ref.46 

• 
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TABLE III "0 

~ 
'Sl 

Charge Distributions Calculated from SLMOs 0 
>< 

~ ~. 

~ CNDOj2 Hamiltonian INDO Hamiltonian o· 
0 ::s 
0 Molecule Bond elements of matrix P . 103 atomic charges elements of matrix P. 103 atomic charges '" 
3 5' 
3 A-B 
" pAA pAB P~~ A B pAA pAB P~~ A B ~ :::J 

1111 I1 V 1111 I1 V 

~ ?:: 
0 

! CH4 C-H 1018 1000 982 -0,073 +0·018 1002 1000 998 -0,006 +0·002 0-

~ 
CH3F C-H 1042 999 958 +0·261 +0·042 1011 1000 989 +0'397 +0·011 0-

~ '"d 
C-F 613 922 1387 -0·387 570 903 1430 -0,430 (") 

CH2 F2 C-H 1060 998 940 +0·607 +0'060 1013 100O 987 +0·800 +0'013 
F 
0 

C-F 636 932 1364 -0,364 587 911 1413 -0,413 
~ 

CHF3 C-H 1077 997 923 +0·957 +0'077 1013 1000 987 +1·192 +0'013 S-o 
C-F 655 939 1345 -0,345 598 916 1402- -0·402 0-

CF4 C-F 671 944 1329 +1 ·317 -0'329 605 919 1395 +1 ·578 -0,395 

CH2 0 C-H 1049 999 951 +0'130 +0'049 1021 1000 979 +0·254 +0'021 
c-o 747 967 1253 -0·227 723 961 1277 -0'296] 
C-O 1026 1000 974 980 1000 1019 

~ 

~ 
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The "charge alternation" hypothesis on ab initio calculations has been criticized42
, and 

also the de-orthogonalization approach43 applied on the CNDOj2 MO-coefficient 
matrix gives the correct charge distribution trends, in an agreement with the clas­
sical chemical assumptions44

• 

Dipole Moments 

The calculated molecular dipole moments are listed in Table IV. The experimental 
dipole moments and the values obtained by cannonical MO-LCAO-SCF calculations 
are also included in this table. Our calculated values deviate from the experimental 
datas with deviations less than 1·5 Debyes. Higher deviations are observed in the 
molecules with polar n-bonds: LiF and CO. However, in the valence s- p basis 
of AOs, after ZDO approximation, n-bonds do not contribute to the molecular 
dipole moment. The wrong sign of the calculated dipole moment of HF molecule 
connects with the neglection of the bicentric first-moment integrals which give the 
high negative contribution. From this point of wiev it is assumed, that the dipole 
moment is not a suitable property to test the molecular wave function in the ZDO 
approximation. As bicentric first-moment and also higher~moment integrals possess 
in general with significant values, the neglection of them by the ZDO approximation 
provides rather poor molecular electric moments, especially quadrupole mo­
ments45

• 

TABLE IV 

Dipole Moments, D 

fromSLMOs from CMOs 
Molecule ExptI.a 

CNDO/2 INDO CNDO/2 INDO 

LiH -5·88 -6·09 -6·16 -6·19 -6·23 
HF -1-82 +2·73 +2-86 +1-85 + 1·96 
LiF -6·60 -4·54 -4·61 -4-82 -4·73 
CO +0·11 +1·51 +1-61 -0·96 -0·94 
NH3 1·47 1·60 1·62 2·10 2·02 
H 2O 1·85 2-28 2·40 2·15 2·18 
CH3F 1·85 2·87 2-91 1·73 1·77 
CH2 F 2 1·96 3·21 3·21 1·94 1·94 
CHF3 1·65 2·70 2·67 1·68 1·64 
CH2 0 2·31 2·10 2·31 1·89 1·88 

a Ref.47 ,48. 
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J C - H Coupling Constants 

In the paper2S a simple formula for the correlation of experimental carbon 13-proton 
nuclear spin-spin coupling constants, JC - H, with s-electron densities on C-H 
bonds was proposed: 

(35) 

In this approximate formula, Ilj is the orbital energy of the bonding SLMO on i-th 
C-H bond; Cj(2s) = bjl'a~.s and Rj(ls) = b1v are the s-characters of i-th bonding 
SLMO. Using calculated quantities XC- H = IlC-H C(2S)2 R(ls)2 and the experi­
mental values of JC - H , least square regression has been performed and has a high 
correlation coefficient ( =0'99). Results of the correlation are listed in Table V. 

Electronic and Total Energy Terms 

In this part the following important aspects of the modified PCILO method 
(M~PCILO) were studied in more details: (i) the dependence of the electronic energy 
terms on the basis of HAOs in various orders of PT; (ii) the deviation of the zeroth-or­
der energy with respect to self-consistent-field electronic energy - localization defect 
E~cF - E(O); (iii) the compensation of the localization defect with the 2nd-order 
de localization energy; (iv) the sensitivity of the electronic energy on the use oflocalized 
bonding model in various orders of PT; and (v) the dependence of the correlation 
energy on the number of valence electrons. 

The calculated electronic energy terms are listed in Table VI (for INDO Hamilto­
nian approximation). Two different bases of HAOs were chosen: (i) HAOs cal-

TABLE V 

JC - H Coupling Constants, Hz 

Exptl.a CNDOj2 method INDO method 
Molecule 

JC - H XC - H 
b 

JC - H XC- H 
b 

JC - H 

CH3CH3 126·0 1·5203 127·0 1'5176 126·8 
CH4 125·0 1·4570 118·2 1-4555 118·2 

CH3F 149·1 1·7148 153-8 1·7159 154'1 
CH2 F 2 184'5 1·9889 191·7 1'9906 192·0 

CHF3 239·1 2·2878 233 ·0 2·2846 232'6 
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culated by the EMOA method, and (ii) the canonical (sp, Sp2, Sp3) HAOs. It can be 
concluded that in general the zeroth-order energy is better in the case of canonical 
HAOs (and the MBPT converges faster) than in the case of EMOA HAOs. The 
zeroth-order energy deterioration using the EMOA HAOs probably is connected 
with the fact that the overlap integrals on bonds are maximized in the first step 
and neglected in the second step, e.g. if the ZDO approximation is used in the 
2 x 2 Roothaan equations. 

Testing the localization defect the polar molecules were chosen because of the 
large localization of the electronic density at lone pairs on 0 and F atoms. The 
magnitude of this defect is less than 1% of the electronic energy in the studied mole­
cules, so that the used localized bonding models can be regarded as suitable for 
description of the collective molecular properties in the zeroth order of PT. On the 
other hand, the localization defect represents a part of the energy which is to be 
compensed with the sum of all diagrams with one-particle vertic¢s, in the framework 
of the diagramatic MBPT. The greater part of this quantity may be compensed 
with the delocalization energy E~~m in the 2nd order of PT. Really, this compensa­
tion E~~m/(E~CF - E~O») is quite satisfactory: about 50-80%. 

In paperS 1 , using the Pade approximants, the alternative expressions of the Ray­
leigh-Schrodinger perturbation series for the energy were proposed. The most 
common 3rd-order series 

is only the special case of the general form of the Pade approximant E[m/n] for m = 3 
and n = 0 (m + n = p is the order of PT). The alternative expression for the energy 
in the 3rd order of PT, is for example, the approximant Ert..~~]. That is defined as 

(37) 

FIG. 3 

The Definition of Antisymmetrized Vertices 
in MBPT 
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Comparing the series (37) and (36) the former is better because of its smaller com­
plement to the exact series for the electronic energy E~'. Secondly, the approximant 
of the type E~~;l/n] is to be invariant with respect to shifted or scaled denomina­
tors15

•
51

• Thus, both of this alternative corrections after the 3rd order of PT: 
E~2) + E~3) and E~2)/(1 - Eh3 )/Eh2») were calculated and they are included in Table VI 
too. 

TABLE VI 

Electronic Energy Terms (eV) by Modified PCILO Method (INDO Hamiltonian) 

3rd-order 

-EbO) Local. 2nd-order corrections corrections Molecule defectD 

-E~22m -E~~\ -Eb2 ) [3/0]& [2jllC 

A) HAOs by EMOA method 

LiH 38·20 0·16 0·08 0·26 0'33 0-42 0-46 

NH3 602·28 1·21 0·64 0·86 1·50 1·70 1·73 
H 2 O 704·67 2·71 1·46 0·64 2·10 2·11 2·11 
HF 844·19 3·32 2·00 0·23 2·23 1·94 1·97 
CO 953·93 3-65 2·39 2·32 4'71 4·70 4'70 

°2 1378·00 7·19 4'88 2·53 7'41 7·45 7·45 
CH4 527·26 0·15 0·13 0 '96 1·09 1·38 1·48 

CH3F 1 584'33 4·36 3'14 1·15 4·28 4·20 4·20 
CH2 F 2 2883'36 9·26 6·78 1·31 8·09 7·69 7'71 
CH2 0 1177·96 4·38 2·59 1·97 4'55 4·98 5·03 

B) Canonical HAOs 

LiH 37·87 0'49 0·23 0·25 0·47 0 '58 0·61 

NH3 603·20 0·30 0·21 0 '85 1·06 1·28 1·33 

H 2 O 706·99 0'39 0·26 0·66 0·93 1-03 1·05 

HF 847'30 0·21 0·15 0'32 0·47 0·49 0'49 

CO 954'92 2·55 1·58 2'32 3·90 3·92 3-92 

°2 1377·11 8·07 5·50 2·53 8·03 8·07 8·07 

CH3F 1587·26 1·42 0·94 1·29 2·23 2·54 2·59 

CH2 0 1180·34 2·01 1-02 2·07 3·09 3·64 3·76 

a E&O) _ mCF. b _E&2) _ E&3) = E&O) _ E~;~~]. C E&O) - E~;~~]. 
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The energy terms calculated by the modified PCILO method have been compared 
with original PCILO calculations4 and also with MO-LCAO-SCF + PCI calcula­
tions52 (Perturbative Configuration Interaction using the Moller-Plesset type of the 
Hamiltonian partitioning). The zeroth-, 2nd-, and 3rd- order total molecular energies 
are listed in Table VII (for CNDOj2 Hamiltonian approximation), where the total 
SCF energy is chosen as the referential level. It can be concluded that the Epstein­
-Nesbet denominator (by the original PCILO method) provides a larger contribution 
in the energy terms than does the Moller-Plesset denominator (by the modified 
PCILO method). 

The dependence of the electronic energy terms on the use of a molecular bonding 
model has been also tested. Two quite different bonding models have been con­
sidered for the LiF molecule: Li ==:;FI and Li-!::I- Since the zeroth-order ground-state 
energies for this models differ from each other by 4 eV, the corrected 2nd-order 
energies differ only by 2 eV. A similar situation has been observed in M-PCILO 
calculations of the BeF 2 molecule using two different bonding models: F=Be=F 
and I£-Be-£I. The difference in the zeroth-order energies is approxim;tely 7 eV 
and the one in the corrected 2nd-order energies is approximately 2 eV. It shows that 
the corrected 2nd-order ground-state energy is little sensitive on the basis of SLMOs 
by the M-PCILO method. 

On Fig. 4, the correlation energy, E~2_\, versus the number of valence electrons, n., 
is plotted for the series of the molecules CH4 , CH3F, CH2F 2, CHF 3 and CF4 • The 

£ <21 
boob 

8 20 n, ~ 32 

FIG. 4 

The Second-Order Correlation Energy E~~.\ 
vs the Number of Valence Electrons in the 
Series of Fluoromethanes (CNDO/2 Hamil­
tonian approximation) 

1 MO-LCAO·SCF+PClmethod; 2 original 
PClLO method; 3 modified PClLO method. 
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( TABLE VII 

~. 

= 
Total Molecular Energy (eV) in Various Orders of the Perturbation Theory with Respect to the SCF Energy (CNDO/2 Hamiltonian) > 

'0 

~ 
-g 

SCF + PCla Modified PCILOb Original PCILOc 0 x 

~ Molecule ~. 
~CF 2. 0." 2. 3. [2/1]e 0." 2. 3. [2/l]e 13 - T o· 

~ ~ 
3 LiH 29'596 -0·239 0·351 -0·051 -0·139 -0,164 0·680 -0·290 -0,376 -0·384 5' 

~ NH3 377-487 -0,613 0·225 -0,474 -0·657 -0'723 0·144 -0,959 -0,869 -0'876 ~ 

~ 
H 2 O 540·605 -0,491 0·274 -0·340 -0·454 -0·479 0·172 -0,777 -0·628 -0'648 s: 
HF 773'275 -0,232 0·144 -0·164 -0,205 -0·211 ~ 0·053 -0,352 -0'302 -0,308 0 

! 
Co 

CO 681·367 -2·393 1·797 -1,596 -1 '434 -1,442 1·287 -3,634 -1,452 -2'122 ~ 
'::;: O2 1000'589 -2,889 6·567 -0·260 -0,337 -0,338 Co 

~ "C 
CH4 275·183 -0,664 0·038 -0,641 -0·871 -0'988 0·032 -1·039 -1-019 -1·019 (") 

CH3F 1009·303 -0,989 1·076 -0,447 -0,720 -0'780 0·879 -1,063 -1-163 -1-169 r 
0 

CH2 F2 1743'851 -1,311 2·478 -0·027 -0,400 -0,464 2·241 -0'899 -1,205 -1 ,239 
~ CHF3 2478'661 -1,617 4·318 +0'619 +0'077 -0,016 4·096 -0·627 -1,199 -1,278 
S-CF4 3213·643 -1·936 6·366 +1'318 +0·544 +0-404 6·205 -0-346 -1·228 -1'365 0 

CH2 0 730·088 -2·147 1·583 -0,958 -1,390 -1,478 1·715 -2'309 -1·781 -1,842 Co 

LiFf 752'840 -0,663 5·300 +2·366 +2'350 +2-349 5·670 +0'114 +1·660 + 1-323 
LiF9 0'583 -0,574 -0'318 -0,364 0·201 -0'654 -0·481 -0·510 
BeF/ 1534·075 -1'469 12·871 +4'916 +4·326 +4·279 16·981 -2,086 +0·017 -0·192 
BeF2 9 5·865 +1·489 +1·287 +1·277 11-134 -1,374 -2·737 -2·904 

a MO-LCAO-SCF method with MP type of Pc!. b MP type of PC!, canonical HAOs are used. C EN type of PCl. " Localization defect. e Pade 
approximant 4~~1]. f Bonding model with (1 bonds only. (/ Bonding model with (1 and 1t bonds. 
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linear dependence is perfect in the case of the MP type of the Hamiltonian parti­
tioning, so that the correct dependence of the correlation energy on the number 
of particles is demonstrated in M-PCILO as well as in MO-LCAO-SCF + PCI 
<:alculations. The EN denominator in the original PCILO method (O-PCILO) 
provides the incorrect dependence of the correlation energy on the number of particles. 

The calculated internal barriers of rotation for the ethane molecule are presented 
in Table VIII. The results for the conformational analysis are as reasonable as 
in MO-LCAO-SCF resp. O-PCILO calculations. 

Interatomic Distances and Harmonic Force Constants 

In the series of diatomic molecules Li-H, H-EI, Li =:=FI and IC =:=OI the different 
bonding situations were considered. The potential curve around the energetic mini­
mum (in steps of order pm) was fitted as a quadratic function; from its derivations 

TABLE VIII 

The Internal Barrier of Rotation in Ethane Molecule 

Order Total energy, eV Barrier Method 
ofPT staggered eclipsed eVa 

A) CNDO/2 Hamiltonian 

MO-LCAO-SCF+PCI O. 511·794 511 ·694 0·100 
2. 513·171 513-068 0·103 

M-PCILO O. 510·154 510·143 0·011 
2. 512·549 512'472 0·077 
3. 513·025 512·949 0·076 

[2/1] 513·143 513·071 0·072 
O-PCILO O. 510'306 510·295 0·011 

2. 513-582 513·500 0'082 
3. 513-626 513·533 0·093 

B) INDO Hamiltonian 

MO-LCAO-SCF O. 497-980 497-879 0'101 
M-PCILO O. 496·200 496·189 0·011 

2. 499·243 499·165 · 0'078 

a Experimental value is 0'124 eV. 
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the equilibrium interatomic distance, Rc, and the harmonic force constant, ko, 
were calculated (Table IX). Interatomic distances calculated by M-PCILO method 
possess the values in the region of MO-LCAO-SCF + PCI calculations as well 
as in O-PCILO calculations. It is expected in effect of the use of the same Hamilto­
nian approximation. The zeroth-order force constants are somewhat worse with 
respect to MO-LCAO-SCF calculations. The zeroth- and 2nd- order force constants 
calculated by various methods give the following relations: 

k~O) (M-PCILO) > k~O) (O-PCILO) > k~O) (SCF) > k~2) (M-PCILO) > k~2) (SCF + 
+ PCI) > k~2) (O-PCILO), what is in an accord with expectations. However, the 
improvement of the force constants by PT is rather neglectible with respect to ex­
periments. It seems to be a consequence of the simple ZDO Hamiltonian approxima­
tion rather than makes a failure of the perturbation technique. 

The shape of the potential curve (the curve of the adiabatic potential) in the larger 
atomic separations has been also tested for the HF molecule (Fig. 5 and Fig. 6). 

-760 

E,eV 

-770 

-775 

2 

FIG. 5 

Curves of the Adiabatic Potential for HF 
Molecule by Modified PCILO Method in 
Comparision with the MO-LCAO-SCF+ PCI 
Method 

1 Zero-order energy E(O); 2 SCF energy; 
3 third-order energy E(3); 4 second-order 
energy E(2); 5 second-order energy E~E~+pcl' 
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FIG. 6 

Curves of the Adiabatic Potential for HF 
Molecule by Original PCILO Method ill 
Comparision with the MO-LCAO-SCF+PCI 
Method 

1 Zero-order energy E(O); 2 SCF energy; 
3 second-order energy E~H+pc,; 4 third-or­
der energy E(3); 5 second-order energy E(2). 
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The 2nd-order potential curve has a correct form in the case of MO-LCAO-SCF + 
+ PCI method as well as by M-PCILO method. On the contrary, the vanishing 
EN denominator in the 2nd-order energy causes the incorrect form of the potential 
curve by O-PCILO method; there is a local maximum approaching the dissociation 
limit from above. 

DISCUSSION AND CONCLUSION 

To open the discussion notice that the principal difference between the original and 
the modified PCILO methods lies in the Hamiltonian partitioning scheme. The 
differences between O-PCILO and M~PCILO methods are collected in Table X. 

Due to the Moller-Plesset type of the Hamiltonian partitioning, the effect of the 
overcounting of some diagrams does not exist in the M-PCILO method. That is in con­
trast with the O-PCILO method where the Epstein-Nesbet type of the Hamiltonian 
partitioning is used. The 2nd-order corrections to the ground-state energy are to be 
smaller by M-PCILO than by O-PCILO. However, the single fact that the quantity 
E~~m/(E~CF - E~O)) is equal to 1 ± 0·1 by O-PCILO instead of 0·7 by M-PCILO 
did not give a favourisation of O~PCILO (or the Epstein-Nesbet partitioning). 

TABLE IX 

Equilibrium Interatomic Distances Re and Harmonic Force Constants k. in Various Orders 
of the Perturbation Theory (CNDO/2 Hamiltonian) 

Order Re. 10- 10 m k e• N/cm 
Method 

ofPT LiH HF LiF CO LiH HF LiF CO 

M-PCILOQ O. 1·572 0·982 2'109 1'180 1'95 20·65 2·25 43·08 
2. 1'587 1·000 2·115 1·212 1'88 18·25 2'24 35'54 
3. 1'592 0·993 2·108 1'201 1-83 19·68 2·25 39·74 

M-PCILOb O. 1·604 0'984 H48 1-163 1·95 21'74 2'32 48·29 
2. 1·603 1·002 2·131 1·204 1·86 18'50 2'26 38'10 
3. 1·607 1·000 2'134 1-193 1-85 19'89 2·27 41'88 

O-PCILO O. 1·588 1·000 2·151 1'180 1'98 18'62 2·22 42-93 
2. 1'953 1-015 2·137 1'237 1'83 16·71 H9 31-68 
3. 1'593 1·015 2'144 1-185 1-82 16'78 H2 47·10 

SCF+ PCI O. 1'573 1·000 2·161 1·191 1·94 18·56 1-98 40'51 
2. 1'588 1·009 2·157 1·218 1'88 18·18 1·96 34'70 

ExptJ. 1'595 0·917 1·51 1·128 1-02 9·59 2'50 19·02 

.. HAOs by EMOA method. b Canonical HAOs. 
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On the calculations it can be concluded that the PCILO method is sensitive on the 
use of a basis set of hybrid atomic orbitals . When the basis set of canonical HAOs 
is used the quite good zeroth-order energy is obtained: the localization defect is small 
and the fast convergence of the perturbation series is secured. The use of EMOA 
hybrids gives an inconsistence with the other steps in the PCILO method: the EMOA 
method maximize overlaps of HAOs at bonds but in the next step the ZDO approxi­
mation is applied which neglect them. However, in some cases, the EMOA-basis 
set of HAOs can be more suitable for construction of SLMOs. 

The progress of the PClLO method with respect to MO-LCAO-SCF + PCI calcu­
lations lies in the rapid reductions of two time consuming steps. As the diagonali­
zation procedure is unnecessary for the construction of SLMOs, they are calculated 
by much saving of the computing time. Secondly, the tedious step in calculating 
the two-electron integrals over MOs is rapidly reduced by the use of SLMOs to the 
simple sum of 16 (by INDO) or 4 (by CNDO) terms. Using the convenient basis 
of HAOs, PClLO method can give a better energy than the MO-LCAO-SCF proce­
dure in a much shorter time. For example, by the CNDOj2 Hamiltonian approxima­
tion 20 seconds is consumed at SIEMENS 4004 computer in 3rd-order energy 
calculations of CF4 molecule by M-PCILO methods3

, as opposed to the 1000 seconds 
required to calculate a second-order correlation energy by MO-LCAO-SCF + PCI 
methodS 2. However, the consideration of the INDO Hamiltonian approximation 
makes the PCILO algorithm more complex. Similarly, if the d-orbitals are included 
into the basis set the requirement on the computing time considerably increases. 

TABLE X 

The Mutual Comparison of the Original and Modified PCILO Methods 

Approach 

1. Perturbation theory 
2. Hamiltonian partitioning 
3. Hamiltonian approximation 
4. Basis set of HAOs 
5. Basis set of SLMOs 

6. Applications 

Original PCILO 

ordinary 
Epstein-Nesbet 
CNDOj2 
Del Re method 
optimization of bond­
polarities 
a) only closed shell systems 

b) only elements H-Cl 
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Modified PCILO 

diagramatic MBPT 
Moller-Plesset 
CNDOj2 and INDO 
EMOAmethod 
solution of modified 
Roothaan equations 
also open shell systems 
(UHF approach) 
elements H-Br 
(including transition metals) 



3064 Bo~a : 

Appendix A: 

Modified Roothaan Equations for Strictly Localiz ed Molecular Orbitals 

In the general matrix notation, the column vector of hybrid atomic orbitals, 'P, 

is transformed into a column vector of strictly localized molecular orbitals, cP'<, as: 

(38) 

(index", designes IX- or p-SLMOs' set in the unrestricted open shell approach). 
In all rows and columns of the LCHAO coefficient matrix B" only two elements 
are non-zero. Thus, the elements of column vectors cP" and 'P can be arranged in such 
a way, that the matrix B" is a block-diagonal 

[ B~ 0 .,. 0 "'J 
B" = ~ .. . ~~ . ~ ~ ~ . ~. ~ . : : : 

o 0 ... Bj • • • 

......... . ....... .. . 

(39) 

A 2 x 2 block B~ combines a pair of HAOs into a pair of SLMOs: one bonding 
SLMO, Ii ) , and one antibonding SLMO, li*), associated with i-th covalent bond. 
For a lone lobe (usually occupied with an electron pair) the block Br contains from 
the single element with the unity value. 

In order to obtain SCF equations for matrices B~, it is necessary to intro<;t!!ce 
some approximations into well-known Roothaan equations -. 

(40) 

which are fulfiled for orthonormal canonical MOs expanded into fixed basis of one­
centricfunctions 'P. In Eq. (40), ( 

XF flV = ( I/Ifll Fll/lv) = ( ILl hlv) + 

+ 2:{("Pl." + ~Pl.") ( ILA I vO" ) - "P). .. ( ILA I O"v ) } (41) 
). , .. 

is the matrix element of one-electron effective Fock operator in HAOs' basis; 

SflV = (IL I v) (42) 

is an element of the overlap integral matrix S and EX is the diagonal matrix of one­
electron orbital energies er. The charge-density (bond-order) matrix P" is defined as 
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Px = (B"Y W"B" (43) 

where W" is the diagonal matrix of Mas' occupation numbers with diagonal ele­
ments equal to 1 or 0. Multiplying Eq. (40) from the left side by matrix B", a form 
of Hartree-Fock equations is obtained 

:!J''' = [/'''E'' , (44) 

where :!J'" is the matrix of elements of Fock operator in the basis of Mas. The Mas' 
overlap integral matrix can be written in the form 

[
[/'~ ° ... ° ... \ [0 LI~2'" LI~i "'j 

[/' = ~ .... ~~.:::. ~"~'::'J + ~~~ .. ~~ .......... ~~.i. ..... (45) ° ° ... [/'i ... Llil Lli2 ... ° .. . 
..................... . .................... . 

In the case of SLMOs, [/'~ is the 2 x 2 block of overlap integrals between bonding 
and antibonding SLMO, which are associated with the same i-th bond. They, both 
can be chosen to be orthonormal: [/'~ = I. The symbol LI~J denotes a 2 x 2 block 
of overlap integrals of SLMOs, which are associated with different i-th and j-th 
bond and which have small values (of order ",0'1), in the general case. As a con­
sequence of the complete neglection of elements LI~j' Eq. (44) is factorized': 

or 

( 
<i\ F\i) <i\ F\i*) ) _ (e l ° ) 

<i*\ Fli) <i*\ F\i*) - ° ei . 

(46) 

(47) 

Eq. (47) represent the Hartree-Fock equations for SLMOs, where the non-ortho­
gonality of SLMOs is neglected. Similarly, a form of modified Roothaan equations 
for the coefficient matrices B~ easily is obtained: 

(48) 

with the following simple solutions: 

ef = HI - (SllvY]-l {(~J1 + F~v - 2~vSJ1v) ± 

± [(~Il - Yvv)2 + 4(~v - F~J1SJ1v) (~v - YvV SIlV)]1/2} (49) 
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b~ = Gb~, 
where 

Boca: 

(50) 

(51) 

(52) 

In Eqs (49)-(52), the lower eigenvalue G~ (with the negative sign of the discriminant) 
corresponds to the bonding SLMO and the second one to the antibonding SLMO. 
As 8" is a block-diagonal matrix in the case of SLMOs, the matrix P" defined by 
Eq. (42) also must take the block-diagonal form. Thus, the matrix elements ofthe 
Fock operator defined by Eq. (40) can be still simplified. 

Appendix B: 

The Electronic Energy Terms up to the Third Order of MBPT 

(i) Closed shell system 

E~O) = o~~ (il hli) + Gi) 
i 

E~~m = 2°f~ ~~(Fia)2/Dia 
i a 

Ef:.\ = 0'f r.~(ij II ab)c (ij I ab)/Diajb 
i,j a,b 

(33) 

(54) 

(55) 

(56) 

(57) 
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x (f(ab I cd) (cd I ij)/DiCjd + °f~(ab I kl) (k11 ij)/Dka1b + 
c,d k,l 

+ 2°~~ vf(ka II ci)c (cb I ki>/DkCjb -
k C 

- (kb lie) <ac I kj)/DkajC - <ka I ci) <be I kj)/Dkbjc)] . (58) 

(ii) Open shell system (UHF approach) 

Cl.P oCCN 

E~O) = t L L «il hli) + en (59) 
x iN 

(I,ll occ" vir", 

E~2m = L L L (FraY/D':a (60) 
')( j~ ax 

lX,P occ" vir" OCC", vir", 

E~2~b =! L L L {L L (ij II ab)l/Dr. jb + 
)(. iH aH jH b", 

+ 2°I,~ VI <ij I ab)2/(Dra + D1b)} (61) 
j~ b~ 

(I,p OCC", vir..: vir" OCC", 

E~~m = L L L Fr./ Dra( L F:c~J Dre - L F:kF~d D~a) 
'K i" aIC C", k" 

(62) 

a,p occ" vir" OCC" vir", 

E~~b = L L L {L L <ij II ab)A/Drajb[FraF"M3/Djb + l/Di.) -
x iN aH j", bH 

_Of"«ij II kb)A~a/D~. + t<kj II ab)AFrk/D~ajb) + 
k" 

+ 1'( cj II ab) A Fre/ Dre + t< ij II cb) A F:e/ Drejb)] + 
c" 

+O~~ l~<ij I ab)/(Dra + D1b) {Fr.FM3/D1b + l/Dia) -
j~ b~ 

- 2°r[ <ij I kb) ~./D~a + !<kj I ab) Frk/(D~a + D1b)] + 
k" 

+ 2
V
I[<cj lab) Fre/Die + !<ij I cb) F:e/(Die + D1b)]}} (63) 
e" 
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Cl, P, OCC", vir", OCCH virH vir", 

E~3lb = L: L L: { L: L (ij!! ab )A/Dr.Jb[! L (ab II cd)A ( cd II ij)A/D~cjd + 
')(. i N ON j", b", c HId ", 

+ ! °E
H 

(ab I! kl ) A ( kill ij)A/D~a lb + 
Ie,,, I", 

+ O~H vI ( ic II ak ) A (kj II Cb)A/D~cib + 
kH C" 

+O~' v~'( iC I ak ) ( kj I cb)/(D~c + Djb)] + 
k. c. 

+ O~' v~'( ij I ab ) /(Dr. + D1b) X 
i, b, 

X [!vI I'( ab I cd ) ( cd I ij )/(Dr~ + D1d) + 
e" d. 

+ tO~H °E" ( ab I kl ) ( k/l ij)/(D~. + Di\,) + 
kH I, 

+0I;' vI' ( iC I ak ) ( kj II Cb)A/D~cJb + 
k" C tl 

+0I;' vI ( ic II ak )A ( kj I cb)/(D~c + D1b) -
k", ex 

_ O~H v~'( iC I kb ) (kj I ac)/(D~a + D1~)]} . 
kH el'J 

In Eqs (53) - (64), 'X is the spin-index (0: or P); '1 designes the complementary spin­
index with respect of 'X, which is defined as: '1(0:) = P and '1(P) = 0:; occ" and occ" are 
the occupied orbitals; vir" and vir" are the unoccupied (virtual) orbit~ls. The other 
symbols are defined in the main text. 

If the CNDO/2 Hamiltonian approximation on the s- p valence basis of AOs 
is applied, the large simplification of the electronic energy terms is obtained; only 
charge densities Iii), lii*) and li*i*) contribute. For example, for closed shell systems 
following formulae have been derived: 

(65) 

(66) 
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E~:!b = °I«[ (ii I i*i*iJ(2Dii .) + 4°I (ij I i*j* ) 2/Dii o jj .] 
i j>i · 

for i*,j* E vil'a ; (67} 

E~~m = 4°f vI Hia.!Dia.( VI Ha'b.HibO!Dib' - I«Hja.Hij!Dj.o) (68) 

E(3) 
m-b 

i n-*i· b·>o· j>i 

for i*,j*Evira; 

E~3_\ = 2I(ij I i*j*)!Dii'W[8°~«(jk Ii*k*) (ik I i*k*)/Djjokk• + 

where 

i,j k>i 

+ (ij I i*j*)!Dii'W«ij I ij) + (i*j* I i*j*) - 2(ii* I ii*) + 
+ 4(ii I i*i*») - 4(ij I i*j*) (ii I i*i*)J(2Diio)] + 

+ o~.[ (ii I i*i*)J(2Dii .)J2 (-(ii Iii) + 2(ii I i*i*) + 
i 

+ 4(ii* I ii*) - (i*i* I i*i*») for i*,j*, k* E vira; 

(69} 

(70) 

(71} 

In Eqs (65)-(70) only the restriction that bonding SLMOs are occupied is used; 
some antibonding SLMOs can be occupied, too. If the restriction, that antibonding. 
SLMOs are unoccupied is considered, the formulae firstly derived by Kvasnicka39 

for the second-order correction to the energy can be obtained. Finally, notice, that. 
the formula (70) for the third-order correlation energy differs from analogous term 
published in2 by simple replacing the Epstein-Nesbet denominator with the Moller-­
-Plesset one. Therefore, a simple one-to-one correspondence between the original. 
formulation of the PCILO method and the present modified PCILO approach 
does not exist. 
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