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The perturbative configuration interaction using strictly localized molecular orbitals, called
the modified PCILO method, has been applied in this communication for the calculations of the
energy terms of 15 small molecules up to the third order of the perturbation theory. For this
method the use of the Rayleigh-Schrédinger many-body perturbation theory with the Moller—
—Plesset type of the Hamiltonian partitioning is characteristic. On the CNDO/2 and INDO
Ievel of approximations the strictly localized molecular orbitals have been constructed by solving
the modified 2 X 2 Roothaan’s equations. From the zeroth order ground-state wave function
the charge distributions, dipole moments and carbon 13- proton nuclear spin-spin coupling
constants have been calculated, Results show that the chemical formula, represented with the
zeroth order of the perturbation theory, is a good order of the approximation for the study of the
molecule. For diatomic molecules the equilibrium interatomic distances and harmonic force
constants have been calculated up to the third order of the perturbation theory. The second
order of the perturbation theory provides results which are very near to the MO-LCAO-SCF
calculations. The main advantage of the PCILO method lies in much saving of the computing
time.

The PCILO method (Perturbative Configuration Interaction using Localized Orbitals) is based
on the concept that corresponds to the looking at the molecule as it would be built up from
“two-centers, two-electron fragments” (localized chemical bonds) in the mutual interaction.
This interaction is treated by the perturbation theory (PT). The use of PT is a very effective
and powerful way to transform a rather poor basis of localized orbitals to the good molecular
wave function including the electron delocalization and correlation.

The PCILO method was developed on two different approaches. The principal difference
between them lies, of course, in the application of the perturbation theory. The original PCILO
method was formulated by Malrieu and coworkers"“; they preferred the use of the Epstein-
—Nesbet (EN) type 5.6 of the partition in the Hamiltonian partitioning scheme. The modified
PCILO method-”g, in an accord with ref.lo, exploits the Moller-Plesset (MP) type11 of the
Hamiltonian partitioning and it is strictly derived from the diagramatic Rayleigh-Schrodinger
many-body perturbation theory (MBPT) in contrast to the original PCILO, where the diagramatic
representation of individual energy terms has only the illustrative meaning.

The choice of the type of the Hamiltonian partitioning is a crucial point that has to be described
in more details. It is well known that from the four most investigated many-body perturbation
techniques: Reyleigh-Schrédinger with the Moller—Plesset (RS-MP) or Epstein-Nesbet (RS-EN)
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partitioning and Brillouin—~Wigner with the Moller-Plesset (BW-MP) or Epstein-Nesbet (BW-EN)
partitioning, only the simplest RS-MP procedure is invariant with respect to the mixing of degene-
rate orbitals. The RS-MP procedure also provides the correct (linear) dependence of the cor-
relation energy on the number of particles. Therefore, it is preferred as a general unambiguous
perturbation technique”. According to Claverie and coworkers!®'!'% the RS-EN procedure
causes some lower energy with respect to the RS-MP procedure for the series of polyenes. These
authors have preferred the RS-EN procedure. However, Bartlett and Shavitt!® on ab initio
MBPT calculations have shown that the MP series converges faster than EN series in higher
orders, unlike to the expectations of ref.'®'!#, Further, Ostlund and Bowen'? have shown that
the RS-EN procedure offers also incorrect potential curves in 2nd order of PT. Finally, the
RS-EN, BW-MP and BW-EN procedures all include the higher-order terms or diagrams in the
given order of PT and they are not directly applicable in the framework of the second-quantiza-
tion formalism. However, the modified partitioning procedures with a “denominator shift"
approach were proposed‘s'”; they can be useful on the second-quantization formulations
of the many-body perturbation theories but applications of these methods should be still studied.

The essential features of the PCILO method in its original and modified version are exactly
the same: the construction of a likely fully localized zeroth order determinant, and of a basis
of orthogonal excited determinants from an a priori set of fully localized bond MO’s, perturbative
obtention of the ground-state wave function and energy from the CI matrix or MBPT. To the
significant improvements in the modified PCILO method belong”: (/) the introduction of the
INDO Hamiltonian approximation into the PCILO method; (i) the extension of the method
on open shell systems (in UHF approach); (iii) the extension of the applicability of the method
on compounds which consists from H to Br atoms including transition metals. The use of EMOA
hybrid atomic orbitals instead of Del Re’s ones and the solution of 2 X 2 Roothaan’s equations
instead of the bond-polarity parameter’s optimization are minor modifications used here. It
may be mentioned that also the original PCILO method was recently extented on the INDO
Hamiltonian approximation®®. However, due to the different choice of the Hamiltonian parti-
tioning in the perturbation technique the one-to-one correspondence between the original and ~
modified PCILO methods does not exist.

In this paper the modified PCILO method is formulated up to the 3rd order of PT
for the energy. Method is tested on the ground of two groups of criteria: (i) the zeroth
order wave function is tested in terms of charge distribution, dipole moments,
carbon 13- proton coupling constants and the “localization defect” (thal represents,
the deviation in the energy with respect to the SCF energy); (ii) the convergence
of the used perturbation theory is examined in terms of the energy, equilibrium
interatomic distances, harmonic force constants and curves of the adiabatic potential
up to the 3rd order of PT. Results are compared, as possible, with those obtained
by MO-LCAO-SCF and original PCILO methods.

Strictly Localized Molecular Orbitals

It is well known that in the Hartree—Fock equations for molecular orbitals (MO)
the off-diagonal part of the Lagrangian multiplier’s matrix must be fixed by additional
conditions®'. The most common canonical fixation in the MO-LCAO-SCF method
corresponds to the choice of MOs which are rather delocalized throughout the mole-
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cular skeleton. Another well-known fixations which well preserve the ground-state
electronic energy, E°F, correspond to the choice of intrinsicly localized MOs,
according to Ruedenberg’s®!. Boys’22 or von Niessen’s?? localization criteria. Howe-
ver, these orbitals are not localized strictly; they have the non-zero components
from more than two atoms, in general. Maintaining strictly localized (two-center)
molecular orbitals corresponds to the introduction of some additional approximation
into Hartree-Fock equations. These externally localized MOs produce the ground-
state electronic energy, E,, which is to some extent higher than the energy E5F.
As the strictly localized molecular orbitals (SLMO) are chosen with respect to the
chemical formula of a molecule, the corresponding ground-state wave function,
|¢>0), (the single Slater determinant) is a good order of approximation for the study
of the molecule. Classical theoretical chemistry and the studies on the localization
of the self-consistent-field orbitals provide a large justification for this approach?*.

A pair of SLMOs associated with i-th chemical bond: one bonding SLMO, |i),
and one antibonding SLMO, |i*}, let be expressed in the form of a linecar combina-
tion of a pair of hybrid atomic orbitals (HAO):

> = byl + by O]
[i%> = bl|u> + bY|v> . ()

The basis of HAOs, { ¥4}, is built up from atomic orbitals, {x?}:

A
lwy =¥t =Yahat, 3

where the hybridization coefficients, a;}',, on all A-th centres in a polyatomic mole-
cule by EMOA method?%2¢ can be obtained. To describe any bonding situation
with respect to the chemical formula of the molecule, it is suitable to introduce
a discrete topological function, f(A, 1) on the sets of atomic indices, A, and indices
of HAOs on A-th centre, u; the value of the topological function is equal to the
ordering number of i-th chemical bond: f(A, ) = i (Fig. 1). This function enables

Fia. 1
The Numbering System for the Definition
of the Topological Function f(A, ) in a Mole-
cule

O Atom, - HAO, -——- bond.
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the convenient selection of a pair of HAOs, ¥4 = |u> and ¥§ = |v), which are
combined into a pair of SLMOs on i-th bond, on the condition: f(A,p) =1i=
= f(B, v). The lone lobes (non-bonding HAOs) are regarded as non-connected
bonds for which the bonding partners do not exist.

In Appendix A, the modified 2 x 2 Roothaan’s equations for expanding coeffi-
cients, b;,, have been derived:

XFAR — & FAR — &17S,\ /b _ /0 @
*FBA _ g %S, “FBP — ¥/ \ b7, 0/’
which are fulfiled for all i-th bonds: i = (1 — 84 5) O¢(a,u,s,v and they have the

simple explicit solutions. These equations fully correspond to a local Brillouin’s
theorem which states:

il Fli*y = 0. ©
In Eq. (4),
C D
*Fov = {Cual Blvp) + ZLZZ[(“PS,) + PP3D) (v | Jcop) —

D
- uPSr)(/"'AJD | ;‘CVB)] 5r(c,;.),r(n,u)} ‘SI(A.u).f(B.V) (6)

is the matrix element of the one-electron effective Fock operator, F, in the basis _
of HAOs; the symbol » designes a- or - set of SLMOs in the unrestricted open shell
approach. The charge-density (bond-order) matrix elements *PA? are defined as

“P:? = (w,i‘b,i‘ub,i‘v + Wf'xb::b;?) So(a,u),0(B,v) > (7)

where w; is the occupation number of i-th bonding (w{™* for antibonding) strictly
localized molecular spinorbital with a- or S-electron.

For the next consideration we introduce the ZDO approximation on the basis
of AOs. In effect of this approximation, the overlap integrals of HAOs, S,,,, in Eq. (4)
are neglected. Further, the non-zero two-electron integrals in the HAO’s basis are:

* The used convention for the integrals is:
G a7y = Jof) h(1) o;(1) dry
Gk = ik [ 1) = [fo¥1) 032 1ryz 9i(1) 9y(2) dr, dry

i || Ky p = Cij| Ky — Cif| 1)
|| klye = 2Ga | Kty — if | 1)
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(i) the bicentric integrals

A B
(uA'lA l VBUB) = Za:.ra;\.r Za‘v’,,as,,(r,\m ‘ SBSB) (8)
T s

(ii) the monocentric integrals

A
(#aka | vaca) = Y ab.af ab.al (rt ]| su) )

1,5,4,u

(in CNDO approach r =t and s = u). Thus, the matrix elements of the Fock
operator in HAO’s basis are simplified as:

A
*F:‘: = <ﬂA| h|ﬂA> - ZuPe\?(#AVAI VA#A) +

B
+ ;Z(“P?‘? + BP?‘?) (#A#A | "BVB) (10)

A B
*Fp? = {Cpal hlve) — ;Z”Pi‘uﬂ(#ﬂﬁ.l ¥808) Orea ). 18,07) X
X (1 - 6A.B) 5f(A,u),f(n,v) . (”)

CNDO/2 Hamiltonian Approximation

The well-known CNDO|2 parametrization scheme on the basis of AOs can be
applied. Two different cases: the s—p or s—p—d and the d—s—p valence basis
must be distinguished.

(i) s—p or s—p—d valence basis: The matrix elements {r,| h|sy> using the stan-
dard Pople’s approach?” may be evaluated; for the elements Na—Cl the parametriza-
tion according to Santry and Segal®® is convenient and for the elements Ge—Br
the parameters derived by Hase and Schweig?® can be used. As the two-electron
integrals (rp7 | spss) with the mean value y,p are approximed, due to the ortho-
gonality condition for HAOs, the two-electron integrals do not depend on the hybridi-
zation:

(#A)'A | VBU'B) = VaB%0vo « (12)

Thus, the large simplifications of the formulae (10) and (11) are allowed:

*Fw = il h‘.”A) + %:}’AB YEPW +PPY) ~ van Pht (13)
*Fi? = {ial Blve) — 7an *Pavt (1 — 0a,8) Srcanm.cm.m) » (14)
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where

Cpal Blve) = Z Zap,.av RLIESS (15)

The large simplification also for two-electron integrals in SLMO’s basis is obtained;
the non-zero charge distributions are only |ii), |ii*) and |i*i*), e.g. the non-zero

integrals are of the type:
i j i j
i*f | j* i*{ |j* -

Further, an integral in SLMO basis is composed of from 4 (or less than 4) terms
expressed in the basis of AOs. For the orbital energies there are valid:

& = G Fli> = G bli) — (i | i,0,) —
a,p occy

(u x| i )l,“succ + Z Z (’ | knk'\) (16)
* = x| Fliy = <] bl = (B LX) —
@B occy
(| e + 3 B3 K, @)
Nk

where the symbol occ, means the occupied molecular orbitals for electrons with
n-spin. )

(ii) d—s—p valence basis: The parametrization according to Clack, Hush and
Yandle3® is convenient in this case for transition metals Sc—Cu. As the two-electron
integrals depend on the principal quantum number of the AOs considered, the inte-
grals: a5(S, S), 7as(S, D), yap(D, S) and 7,5(D, D) must be considered. Thus the
transformations (8), (9) and the formulae (/0), (11) must be used.

INDO Hamiltonian Approximation
The standard Pople’s approach3*+32 for s— p basis of AOs is convenient in this case.
The formula (10) is simplified as
B
KF:: = <.‘1A| hl#A> + Z,)’AB Z(“P?? + avaag) +
B¥A v
A e pan

+ ZICPE + PPOY) (nasa | vava) — “POMuava | vara)] (18)
and for the off-diagonal elements of the Fock operator the formula (14) is useful.

In the d—s~ p basis for elements Sc—Cu the parametrization according to Clack3?
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can be used; the transformations (8), (9) and the formulae (10), (11) must be used
in this case. Notice, that in the original Clack’s approach only the number of 235
monocentric two-electron integrals of the type (rr|ss) and (rs| rs) is considered,
since the total number of non-zero monocentric integrals on each atom is 735%*.
For example, the integrals (p,d,, | p.d,,) and (p,d,, | p,d,,) are equal in their values,
but in the original Clack’s approach the second one is neglected. However, the con-
sideration with all monocentric two-electron integrals in d —s— p basis is not a large
problem; the semiempirical parametrization scheme for all of these integrals is
described in3°.

APPLICATION OF THE MANY-BODY PERTURBATION THEORY

In the Rayleigh-Schrédinger many-body perturbation theory®®37 the electronic

Hamiltonian H is splitted into unperturbed Hamiltonian H, and the perturbation H,.
If the Moller—Plesset type of the Hamiltonian partitioning is applied’’, they take
the form:

Hy = <¢o\ H|®o> + 35 N[XX(] (19)

H, = Y(1 - &) <i| Flj> N[X{X/] +

i

+3 % G| RDANDXTXTXX,] - (20)
Here,
<i| Fljy = <i| hlj> + gak I je)a (21)

is the matrix element of the one-electron effective Fock operator in the basis of mole-
cular spinorbitals;

& = <i| Fliy (22)

is the one-electron orbital energy; the symbol occ means the occupied spinorbitals
included in the unperturbed ground-state eigenvector l¢0>, (vir means the unoc-
cupied, virtual spinorbitals); N[...] is the normal product of the creation, X;",
and anihilation, X;, operators. With these definitions, the ground-state electronic
energy, Eg, is given by Goldstone’s linked cluster expansion®®:

1 m
el _ () — E) &, | H -~ H DodLink » 23
Eg nZ:OEo Ey?’ +< ol 1 {mgo E® — H, 1} | 07 Link (23)

where the subscript Link indicates that only linked diagrams are to be included, in the
framework of the diagramatic MBPT. The first terms of the expansion (23) are:
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(i) the zeroth order energy

EY = (®o| Ho|®o) = 3 3 (<i| Bli> + &) (249)
(ii) the first-order correction
E(o” = <¢o| H1|<150> =0 (25)

(iii} the second-order correction

1
E(()z) = ((150[ H1 E(oo) _H H1|¢o> = E:nzlm + Egz—)b » (26)
where
B2u =1, =3 S, @)
a
occ  vir

Egzjb =L, = iZj Zb<ij H ab>i/Diajb (28)

(iv) the third-order correction

EQ = (0o Hy o Hy — ' M, 0> = EQ, + EQ, + ED,

EQ —H, 'E® - H

(29)

where
E® =Ly+L,=

occ vir

-3 zF../Dh{zFa.,Fc,/D.c ";“F,wu/nh} (30)

E® =Ls+Lg+L;+Lg+ Lo+ Lo+ Ly, +Ly,+L;;=

= Z Z(U ” aby, Din]b{FlaFjb(3/DJb + 1/Dia) -
- [;«ij ” kb>a Fka/Dkn + 3<Kkj " abd, Fik/Dkajb)] +

+ [S(¢ef | abda FiolDse + 1< || b3 Fol D)} (31)
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oce vir

EQy=Lys+Ls+Lig= lzj Zbaj || abdafDigys x
oce vir
X { ; Z<Cb “ kjya Cka “ Ci>A/chjb +
+ &Zd@b ” cd), (cd U ij>A/Dicjd +

+ &2 Cab || Ktyn <KL | i/ Dyars} - (32)

Fic. 2
Linked Antisymmetrized Diagrams up to the Third Order of MBPT
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In Eqs (27)—(32), the symbols L, ..., L;s designe the linked antisymmetrized
diagrams (Fig. 2), where the rules for evaluating of these diagrams are collected
in Table I. Integrating over the spin-coordinates in Egs (24)—(32), the separate
formulae for the closed shell and the unrestricted open shell systems can be easily
derived (Appendix B).

RESULTS
Calculations presented in this paper are based on three fundamental steps:
(i) the construction of the basis of HAOs by the EMOA method; calculations of parti-
cular binding energies and the molecular binding energy in this approximation;

(i) the construction of SLMOs using CNDO/2 and INDO Hamiltonian approxima-
tions in the modified 2 x 2 Roothaan’s equations; calculations of the zeroth-order
ground-state energy, charge distributions and the molecular dipole moment;
(iii) the calculation of the energy terms up to the 3rd order of MBPT.

Calculations were performed for 15 small molecules using the valence s— p basis
of Slater AOs (with the exponent for the hydrogen orbital &, = 1-2). In the individual

TABLE I o
Rules for Evaluating of Linked Antisymmetrized Diagrams

1. Label each diagram with general “hole” (i, j, k, I} and “particle” (a, b, ¢, 4) indices.

2. The numerator of the diagram is obtained by the product of ome-clectron integrals
Fij= (1 — &; (i| F| j) (if any) and of antisymmetrized two-electron integrals {(ij | kI,
(Fig.3).

3. The denominator of the diagram is given by a product of terms ZD Ze‘ — &, where p

is a number of pairs of “hole” (/) and “particle” (a) lines between each two vertices
(Diajo = Dig + Dyp). .
4. Sum the ratio (numerator/denominator) over all “hole” and “particle’” indices.

5. The sign of the diagram is given by (—1)®*! where 4 is the number of “hole” lines and /

is the number of continuous lines forming the closed loops (the fermion loops are designed
on Fig. 2).

6. Multiply the diagram by a factor 1/2 for each pair of “equivalent” lines. An equivalent pair
of lines is defined to be two lines beginning at one vertex and ending at another and going
in the same direction (e.g. diagrams Lg, Lg, Ly, Ly, Ly,, L4 have one pair, L, two pairs
and L,,, L;¢ three pairs).
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molecules following bonding models were considered: (i) the bonding model with o-
and 7-bonds: Li=F|, F=Be=F, |C=0|, CH,=0 and |0==0| (unpaired electrons
occupy the antibonding SLMOs); (ii) the bonding model with o-bonds only: Li—H,
H—F|, Li—F|, F—Be—F|, H,0, NH,, CH,, CH,F, CH,F,, CHF;, CF, and
CH;CHj;.

Hybrid Atomic Orbitals and Binding Energies by EMOA Method
In the EMOA (Extended Maximum Overlap Approximation) method?*:2® the parti-

cular binding energy, E",‘,'f, that corresponds to a chemical bond, is defined as
EQ = Kauun | wdy (33
and for the molecular binding energy, ¢, it is valid:

B

A
e= %AZBZ TENIL = 8a8) Seamy. ey s €
B

v

where K:_'f are the semiempirical weighting parameters transferable from one mole-
cule to another.

The calculated hybridization on given atoms in sp* form is listed in Table II.
The deviation angles of the direction of HAOs from the bond directions have been
also calculated and they are included in Table II, too. Notice, that in the series
of the molecules CH;F, CH,F,, CHF; and CF, the particular binding energies of
C—H and C—F bonds increase. It is in a good harmony with the observable thermal
stability of trihalogen methanes in contrast to monohalogen methanes. Calculated
values of the particular binding energies: ES™ x420, ESF 2460, ESC ~320,
ES® ~570 and ES® 2220 (kJ/mol) are in an agreement with expected stabilities
of these bonds®~*!. Calculated molecular binding energies are in remarkable
agreement with the experimental ones (Table II.),

Charge Distributions

The elements of the total charge-density (bond-order) matrix, P,, = “P,, + “P,,,,,
and the atomic charges have been calculated from SLMOs and for a set of selected
molecules they are collected in Table I11. The trinity of the elements: PA%, PAY, Poe
gives the information about the polarity of corresponding bond.

. In the series of the molecules CH,, CH3F, CH,F,, CHF; and CF, the positive
atomic charge on the carbon atom increases and the positive atomic charge on hydro-
gen atom also increases. It is in good agreement with the classical chemical assump-
tions, according to which the negative electron-withdrawing effect of the fluorine
extends throughout the molecular skeleton with a decreasing intensity:
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5 &+ 85+

F« C+«H.

In the given series, the negative atomic charge on fluorine decreases and the polarity
of the C—F bond also decreases. It is in an agreement with the ideas about the com-
peting effect of electronegative substituents in manifold substitued molecules. Notice,
that our calculated charge distributions are in a rough disagreement with the ori-
ginal Pople’s CNDO/2 and INDO calculations?”, which are based on cannonical
MO-LCAO-SCF approach. Pople’s calculations show that a “charge alternation”
may be characteristic of the inductive effect:

5- 6+ 85—
F—C—H,

or in larger molecules
3— &+ b6~ B8+ B85—

X—C—-C—C—-C....

TasLe 11
The Calculated Hybridization in sp™ Form, Deviation Angles of HAOs from Bonds (°), Particular
Binding Energies E:'B (kJ/mol) and Molecular Binding Energy & (kJ/mol) by EMOA Method®

W

sp™ on atom Deviation 8

Molecule Bond E:,'\‘}

A—B A B A B calc. exptl;"

CH;3F C—H 2699 1-81 4169 16974 16820
C—F 4-293 0-593 4466

CH,F, C—H  2-440 2:45 420-6 17682 17620
C—F 3777 0-577 1-47 0-50 463-5

CHF, C—H 2184 1-48 0-52 4217 18683 18678
C—F 3374 0-559 4818

CF, C—F 3:000 0-554

Co C—0 11712 0-457 5956
n: C—0 . 2399

CH,0 C—H 1946 221 4175 15935 15163
C—0 2113 0-512 5533
n: C—0 205-3
CH,CH; C—H 0510 086 4170
C—C 0469 0-469 3206

4 Paramaters used in the EMOA method (kJ/mol): KS*H = 610-3507, KS'F = 852:9078, kS =
= 503-7407, K$*© = 753-1441, KS*© = 933-5052. ® Experimental binding energies have been
evaluated from standard molar enthalpies of formation AHP_298 by ref.*6.

Collection Czechosiov. Chem. Commun. [Vol. 44] [1979]



3053

Hamiltonian Approximations in the Modified PCILO Method

6101

0001 086 L6 0001 970 1 O0—D

Tm@o\ LLT 1 196 [x43 LTT-0— €T I L96 LYL o—D
120-0+ ¥ST-0+ 6L6 0001 1201 6¥0-0+ 0E1-0+ 156 666 6v0 T H—D O'HO
S6¢-0— 8LS- T+ S6e 1 616 S09 60— LI T+ 6Te 1 b44) 1.9 4—D i o)
20%-0— 7001 916 865 SPe0— SPE T 6£6 $g9 d—D0
£10-0+ 60-1+ L86 000 T €101 LLO-O+ L§6:0+ €26 L66 LLO T H—D nmIU
£Ir-0— (304} 116 L8S P9¢-0— Yot 1 (4% 9¢£9 d—D
£10-0+ 008-0+ L86 000 1 (A0 090-0+ L09-0+ ové 866 0901 H—D I°HO
0tr-0— oty I £06 oLS L8E-0— L8E 1 6 €19 A—D
110-0+ L6E-0+ 686 000 I 110 T w00+ 192-0+ 866 666 o1 H—D d°HO
200-0+ 900-0— 866 0001 T00 T 8100+ €L0-0— 86 0001 8101 H—D HO

it A dad g g g v gad  gvd  wed

sad1eyo o1wore 0T * d XIJBW JO SjUAWI[2 sogIeyd ool ¢0T * d XIT1BW JO Sjuaws)d WMMM S[NIB[OA

uejuo)IWeH OANI

uEO)WEH 7/OAND

SQI'TS Wolj Pajenole) suonnqLysi 281ey)

III A18v],

Collection Czechoslov. Chem. Commun. [Vol. 44] [1979)



3054 Boda:

The “charge alternation” hypothesis on ab initio calculations has been criticized*2, and
also the de-orthogonalization approach*® applied on the CNDO/2 MO-coefficient
matrix gives the correct charge distribution trends, in an agreement with the clas-
sical chemical assumptions*®.

Dipole Moments

The calculated molecular dipole moments are listed in Table IV. The experimental
dipole moments and the values obtained by cannonical MO-LCAO-SCF calculations
are also included in this table. Our calculated values deviate from the experimental
datas with deviations less than 1-5 Debyes. Higher deviations are observed in the
molecules with polar n-bonds: LiF and CO. However, in the valence s—p basis
of AOs, after ZDO approximation, nz-bonds do not contribute to the molecular
dipole moment. The wrong sign of the calculated dipole moment of HF molecule
connects with the neglection of the bicentric first-moment integrals which give the
high negative contribution. From this point of wiev it is assumed, that the dipole
moment is not a suitable property to test the molecular wave function in the ZDO
approximation. As bicentric first-moment and also higher-moment integrals possess
in general with significant values, the neglection of them by the ZDO approximation
provides rather poor molecular electric moments, especially quadrupole mo-
ments*>,

TaBLE IV
Dipole Moments, D

from SLMOs from CMOs

Molecule Exptl.*
CNDO/2 INDO CNDO/2 INDO

LiH —5-88 —609 —6-16 —-619 —623
HF —1-82 +2:73 +2:86 +1-85 +1-96
LiF — 660 —4-54 —4:61 —4-82 —473
Cco +0-11 +1-51 +1-61 —096 —094
NH, 1-47 1-60 1-62 2-10 2:02
H,0 1-85 2:28 2-40 2:15 2-18
CH;3F 1-85 2-87 291 173 1.77
CH,F, 1-96 321 3:21 1-94 1-94
CHF; 1-65 2:70 2-67 1-68 1-64
CH,0 231 2:10 231 1-89 1-88
a Ref.47'48.
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Je_n Coupling Constants

In the paper?® a simple formula for the correlation of experimental carbon 13-proton
nuclear spin-spin coupling constants, Jo_g, Wwith s-electron densities on C—H
bonds was proposed:

Jeoy = A + Be, Ci(29)? Hy(1s) . (39)

In this approximate formula, ¢ is the orbital energy of the bonding SLMO on i-th
C—H bond; C;(2s) = b;,aS, and Hi(ls) = b,, are the s-characters of i-th bonding
SLMO. Using calculated quantities Xc_y = éc-y C(25)* H(1s)* and the experi-
mental values of Jc_y, least square regression has been performed and has a high
correlation coefficient (=099). Results of the correlation are listed in Table V.

Electronic and Total Energy Terms

In this part the following important aspects of the modified PCILO method
(M-PCILO) were studied in more details: (i) the dependence of the electronic energy
terms on the basis of HAOs in various orders of PT; (ii) the deviation of the zeroth-or-
der energy with respect to self-consistent-field electronic energy — localization defect
E5F — E; (iif) the compensation of the localization defect with the 2nd-order
delocalization energy; (iv) the sensitivity of the electronic energy on the use of localized
bonding model in various orders of PT; and (v) the dependence of the correlation
energy on the number of valence electrons.

The calculated electronic energy terms are listed in Table VI (for INDO Hamilto-
nian approximation). Two different bases of HAOs were chosen: (i) HAOs cal-

TABLE V
Jo—y Coupling Constants, Hz

) Exptl® CNDO/2 method INDO method
Molecule b s

Je-n Xc-u Je-n Xc-n Je-n
CH,;CH,; 1260 1-5203 1270 1-5176 126'8
CH, 1250 1-4570 1182 14555 1182
CH,F 1491 1-7148 1538 1-7159 1541
CH,F, 184-5 1-9889 1917 1-9906 1920
CHF4 2391 2-2878 2330 2-2846 2326

4 Ref*?, b Xe_p = ¢ C(2) H(15)? (eV)-
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culated by the EMOA method, and (ii) the canonical (sp, sp?, sp*) HAOs. It can be
concluded that in general the zeroth-order energy is better in the case of canonical
HAOs (and the MBPT converges faster) than in the case of EMOA HAOs. The
zeroth-order energy deterioration using the EMOA HAOs probably is connected
with the fact that the overlap integrals on bonds are maximized in the first step
and neglected in the second step, e.g. if the ZDO approximation is used in the
2 x 2 Roothaan equations.

Testing the localization defect the polar molecules were chosen because of the
large localization of the electronic density at lone pairs on O and F atoms. The
magnitude of this defect is less than 1% of the electronic energy in the studied mole-
cules, so that the used localized bonding models can be regarded as suitable for
description of the collective molecular properties in the zeroth order of PT. On the
other hand, the localization defect represents a part of the energy which is to be
compensed with the sum of all diagrams with one-particle verticgs, in the framework
of the diagramatic MBPT. The greater part of this quantity may be compensed
with the delocalization energy E{2) | in the 2nd order of PT. Really, this compensa-
tion EZ) J(ESTF — E{P) is quite satisfactory: about 50—80%.

In paper®!, using the Padé approximants, the alternative expressions of the Ray-
leigh~Schrédinger perturbation series for the energy were proposed. The most
common 3rd-order series

ER = B + O + E (30)

is only the special case of the general form of the Padé approximant EM™*! for m = 3
andn =0 (m + n = pis the order of PT). The alternative expression for the energy
in the 3rd order of PT, is for example, the approximant E{Z/L). That is defined as

Bl = EQ + EQJ(1 — EQ[E) . (7
W = Ry o= - dIHFID

= ijlk>y = - <ijlky FiG. 3
The Definition of Antisymmetrized Vertices
in MBPT
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Comparing the series (37) and (36) the former is better because of its smaller com-
plement to the exact series for the electronic energy Eg'. Secondly, the approximant
of the type Ef3!/™ is to be invariant with respect to shifted or scaled denomina-
tors*>-!, Thus, both of this alternative corrections after the 3rd order of PT:
E§P + EG and EP[(1 — ESY|ES) were calculated and they are included in Table VI
too.

TABLE VI
Electronic Energy Terms (eV) by Modified PCILO Method (INDO Hamiltonian)

3rd-order

- e '0 .
Local. 2nd-order corrections corrections

Molecule — E((;o) defect?

—ED . —E®, —E® Bl 2ir

A) HAOs by EMOA method

LiH 38-20 0-16 008 026 0-33 0-42 046
NH, 602-28 121 0-64 086 1-50 1-70 173
H,0 704-67 2:71 1-46 0-64 2:10 2-11 2-11
HF 84419 3-32 200 023 2:23 1:94 1-97
Cco 953-93 3:65 2-39 2-32 471 4-70 4-70
0, 1378-00 719 4-88 2:53 7-41 7-45 7-45
CH, 527-26 015 0-13 096 1-09 138 148
CH,3F 158433 436 314 115 4:28 4-20 420
CH,F, 2 883-36 9-26 678 131 8-09 7:69 771
CH,0 117796 4-38 2:59 197 455 498 503

B) Canonical HAOs

LiH 37-87 0-49 0-23 025 0-47 0-58 0-61
NH; 603-20 030 0-21 085 1-06 1-28 1-33
H,0 706-99 039 026 0-66 093 1-03 105
HF 847-30 0-21 015 032 0-47 049 0-49
co 954-92 2:55 1-58 2:32 3:90 392 3:92
0, 1377-11 8:07 5:50 2:53 8-03 8:07 8-:07
CH3F 1587-26 1-42 094 129 2:23 2-54 259
CH,0 1180-34 2:01 1-02 2:07 3-09 3-64 376

B — BYOT.0 B — 5 = £ ~ ED. B — B
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The energy terms calculated by the modified PCILO method have been compared
with original PCILO calculations* and also with MO-LCAO-SCF + PCI calcula-
tions®? (Perturbative Configuration Interaction using the Moller-Plesset type of the
Hamiltonian partitioning). The zeroth-, 2nd-, and 3rd- order total molecular energies
are listed in Table VII (for CNDO/2 Hamiltonian approximation), where the total
SCF energy is chosen as the referential level. It can be concluded that the Epstein—
~Nesbet denominator (by the original PCILO method) provides a larger contribution
in the energy terms than does the Moller-Plesset denominator (by the modified
PCILO method).

The dependence of the electronic energy terms on the use of a molecular bonding
model has been also tested. Two quite different bonding models have been con-
sidered for the LiF molecule: Li=F| and Li—F|. Since the zeroth-order ground-state
energies for this models differ from each other by 4 eV, the corrected 2nd-order
energies differ only by 2eV. A similar situation has been observed in M-PCILO
calculations of the BeF, molecule using two different bonding models: F=Be=F
and |F—Be—F|. The difference in the zeroth-order energies is approximately 7 eV
and the one in the corrected 2nd-order energies is approximately 2 eV. It shows that
the corrected 2nd-order ground-state energy is little sensitive on the basis of SLMOs
by the M-PCILO method.

On Fig. 4, the correlation energy, E{?,, versus the number of valence electrons, n,,
is plotted for the series of the molecules CH,, CH,F, CH,F,, CHF; and CF,. The

2 T T T T T

@
Eg-s |-

Fic. 4
The Second-Order Correlation Energy Ef2),
vs the Number of Valence Electrons in the
Series of Fluoromethanes (CNDO/2 Hamil-
tonian approximation)

1 MO-LCAO-SCF+ PCI method; 2 original
T E—— PCILO method; 3 modified PCILO method.

ne

Collection Czechoslov. Chem. Commun. [Vol. 44] [1979]



Hamiltonian Approximations in the Modified PCILO Method

3059

*SpUoq 2 PUE o YILA [opot BuIPUOg 4 "A[UO SPUOG o Y [apow Suipuog

P
3 \M.H_m juewixordde

9P , "199JOp UONBZIEOOT |, 1D JO 2d4) N ,, "Posn 912 SQVH [eoruoued ‘[Dd jo adA) JW o Tod s 2d£) JW W poylsw JDS-OVOT-OW »

Y06-T—  LELT—  WLET—  PEIID LLTI4 L8TI+ 68p 14 $98€ 5°3°d
T61:0— L1000+ 980T— 18691  6LTb+  9TE-v+  9I6b+  IL8TI  69b-1—  SLOPES T s
01S-0—  1800—  $590—  10T-0 ¥9£-0—  8IE0—  PLS-O— €850 PEig
€261+ 0991+  PII-0+  0L9S 6vET+  0SeT+ 99T+ 00¢S £99-0—  OP8-TSL A
WeI—  I8L1—  60£T—  SILI 8LrI— 066 T—  8560— €861 LYT-T—  880-0EL O°HO
S9¢-T—  8TTI—  9¥E0—  SOTY pov-0+  PpS-0+  8IE I+ 999 9¢6- T~  EP9-EITE i)
8LT-1—  661-1—  LT90— 960 910-0—  LLO-0+ 6190+  8IEV L19T—  199-8LPT £IHD
66T1—  SOTI—  6680—  IPTT Pov-0—  00v-0—  LT00—  8LPT TIET—  IS8epL T J°HD
691-I—  €91-I— €90-I—  6.80  O08L0— OCTLO— LbPO—  9LO-T 6860—  £0£-600 A°HD
610-1—  6I0-T—  6£0-T—  TE0-0 886-0—  1.80—  I¥90—  8£0-0 $99-0—  €81-SLT YHO

8€€0—  LEEO—  09TO— LS9 688-T— 6850001 26)
wWLT—  TSHI—  pE9E—  L8TI WHI—  pEpI— 96§ 1—  L6L:1 £6£7—  L9E-189 00
80€0—  TOE-0—  TSE-0— €500 f IIT0—  SOT0— ¥9I0—  bHI0 TETO0—  SLT-ELL AH
8¥9-0—  8790—  LLLO—  TLIO , 6LYO—  vSO0—  ObE0—  HLT-0 I60:0—  S09-0bS o%H
9.8:0—  698-0—  6S6-0—  bHI-0 €TL-0—  LS90—  PLYO—  STTO €190—  L8P-LLE SHN
$8€-0—  9LE0—  06T-0—  089-0 P91-0—  6£1-0—  1S00—  ISE-0 6£7:0— 96567 HIT
A1)zl € T 20 Jl1/2] € 4 »0 T ce oot

,0T110d [euBO (OT10d PauIPOl ,10d + 408

(uelmoj[IweH 7/OAND) A319ug ADS 94} 01 109dsay Yiis AI09Y ] UOHEQINIIDG 9} JO SIOPIQ SNOLIBA Ul (A9) A310ug IR[NIS]OIN [210,

1A 218V

Collection Czechoslov. Chem. Commun. [Vol. 44] [1978]



3060 Boda:

linear dependence is perfect in the case of the MP type of the Hamiltonian parti-
tioning, so that the correct dependence of the correlation energy on the number
of particles is demonstrated in M-PCILO as well as in MO-LCAO-SCF + PCI
calculations. The EN denominator in the original PCILO method (O-PCILO)
provides the incorrect dependence of the correlation energy on the number of particles.

The calculated internal barriers of rotation for the ethane molecule are presented
in Table VIII. The results for the conformational analysis are as reasonable as
in MO-LCAO-SCF resp. O-PCILO calculations.

Interatomic Distances and Harmonic Force Constants

F|, Li=F| and |C=0]| the different
bonding situations were considered. The potential curve around the energetic mini-
mum (in steps of order pm) was fitted as a quadratic function; from its derivations

In the series of diatomic molecules Li—H, H—F

TasLE VIII
The Internal Barrier of Rotation in Ethane Molecule

Method Order Total energy, eV Barrier
of PT staggered eclipsed ev?
A) CNDO/2 Hamiltonian ~
MO-LCAO-SCF+ PCI 0. 511-794 511-694 0-100
2. 513-171 513-068 0-103
M-PCILO 0. 510-154 510-143 0-011
2, 512-549 512-472 0077
3. 513-025 512:949 0-076
[2/1] 513-143 513-071 0-072
O-PCILO 0. 510-306 510-295 0-011
2. 513-582 513-500 0-082
3. 513626 513-533 0-093
B) INDO Hamiltonian
MO-LCAO-SCF 0. 497-980 497-879 0-101
M-PCILO 0. 496200 496-189 0-011
2. 499-243 499165 - 0078

< Experimental value is 0-124 eV,
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the equilibrium interatomic distance, R,, and the harmonic force constant, k,,
were calculated (Table IX). Interatomic distances calculated by M-PCILO method
possess the values in the region of MO-LCAO-SCF + PCI calculations as well
as in O-PCILO calculations. It is expected in effect of the use of the same Hamilto-
nian approximation. The zeroth-order force constants are somewhat worse with
respect to MO-LCAO-SCF calculations. The zeroth- and 2nd- order force constants
calculated by various methods give the following relations:

K (M-PCILO) > k{” (O-PCILO) > k” (SCF) > k¥ (M-PCILO) > k(¥ (SCF +
+ PCI) >k (O-PCILO), what is in an accord with expectations. However, the
improvement of the force constants by PT is rather neglectible with respect to ex-
periments. It seems to be a consequence of the simple ZDO Hamiltonian approxima-
tion rather than makes a failure of the perturbation technique.

The shape of the potential curve (the curve of the adiabatic potential) in the larger
atomic separations has been also tested for the HF molecule (Fig. 5 and Fig. 6).

—-760

=770 1 =770

~775k 1 ~775¢

Fi1G. 5
Curves of the Adiabatic Potential for HF
Molecule by Modified PCILO Method in
Comparision with the MO-LCAO-SCF+PCI
Method

1 Zero-order energy E®); 2 SCF energy;
3 third-order energy E); 4 second-order
energy E®; 5 second-order energy ESE) +pei-

FiG. 6
Curves of the Adiabatic Potential for HF
Molecule by Original PCILO Method in
Comparision with the MO-LCAO-SCF+ PCI
Method

1 Zero-order energy E(u); 2 SCF energy;
3 second-order energy E$Z) i pcy; 4 third-or-
der energy E(a’; 5 second-order energy E@),
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The 2nd-order potential curve has a correct form in the case of MO-LCAO-SCF +
+ PCI method as well as by M-PCILO method. On the contrary, the vanishing
EN denominator in the 2nd-order energy causes the incorrect form of the potential
curve by O-PCILO method; there is a local maximum approaching the dissociation
limit from above.

DISCUSSION AND CONCLUSION

To open the discussion notice that the principal difference between the original and
the modified PCILO methods lies in the Hamiltonian partitioning scheme. The
differences between O-PCILO and M-PCILO methods are collected in Table X.

Due to the Moller-Plesset type of the Hamiltonian partitioning, the effect of the
overcounting of some diagrams does not exist in the M-PCILO method. That is in con-
trast with the O-PCILO method where the Epstein—Nesbet type of the Hamiltonian
partitioning is used. The 2nd-order corrections to the ground-state energy are to be
smaller by M-PCILO than by O-PCILO. However, the single fact that the quantity
E®) NESF — E) is equal to 1 + 0-1 by O-PCILO instead of 0:7 by M-PCILO
did not give a favourisation of O-PCILO (or the Epstein-Nesbet partitioning).

TasLE IX

Equilibrium Interatomic Distances R, and Harmonic Force Constants k. in Various Orders
of the Perturbation Theory (CNDO/Z Hamiltonian)

.

—10
Method Order R,, 1071 m ke, Nfem
of PT [ijH HF LIF CO LiH HF LiF CO
M-PCILO® 0. 1572 0982 2109 14180 1-95 2065 225 4308
2. 14587 1000 2-115 1212 1-88 1825 224 3554
3. 1592 0993 2108 1201 1-83 1968 225 3974
M-PCILO® 0. 1604 0984 2148 1163 195 2174 2:32 4829
2. 1603 1002 2-131 1204 186 1850 226 3810
3. 14607 1000 2:134 1193 185 1989 227 41-88
0-PCILO 0. 1588 1000 2151 1180 1-98 1862 222 42:93
2. 1953 1015 2137 1237 183 1671 219 31:68
3. 14593 1015 2-144 1185 182 1678 212 4710
SCF + PCL 0. 1573 1000 2:161 1191 194 1856 198 4051
2. 1-588 1009 2-157 1218 1-88 1818 196 3470

Exptl. 1-595 0917 1-51 1-128 102 9:59 2:50 19-02

¢ HAOs by EMOA method. ® Canonical HAOs.
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On the calculations it can be concluded that the PCILO method is sensitive on the
use of a basis set of hybrid atomic orbitals. When the basis set of canonical HAOs
is used the quite good zeroth-order energy is obtained: the localization defect is small
and the fast convergence of the perturbation series is secured. The use of EMOA
hybrids gives an inconsistence with the other steps in the PCILO method: the EMOA
method maximize overlaps of HAOs at bonds but in the next step the ZDO approxi-
mation is applied which neglect them. However, in some cases, the EMOA-basis
set of HAOs can be more suitable for construction of SLMOs.

The progress of the PCILO method with respect to MO-LCAO-SCF + PCI calcu-
lations lies in the rapid reductions of two time consuming steps. As the diagonali-
zation procedure is unnecessary for the construction of SLMOs, they are calculated
by much saving of the computing time. Secondly, the tedious step in calculating
the two-electron integrals over MOs is rapidly reduced by the use of SLMOs to the
simple sum of 16 (by INDO) or 4 (by CNDO) terms. Using the convenient basis
of HAOs, PCILO method can give a better energy than the MO-LCAO-SCF proce-
dure in a much shorter time. For example, by the CNDO/2 Hamiltonian approxima-
tion 20 seconds is consumed at SIEMENS 4004 computer in 3rd-order energy
calculations of CF, molecule by M-PCILO method*?, as opposed to the 1000 seconds
required to calculate a second-order correlation energy by MO-LCAO-SCF + PCI
method®2, However, the consideration of the INDO Hamiltonian approximation
makes the PCILO algorithm more complex. Similarly, if the d-orbitals are included
into the basis set the requirement on the computing time considerably increases.

TasLe X
The Mutual Comparison of the Original and Modified PCILO Methods

Approach Original PCILO Modified PCILO
1. Perturbation theory ordinary diagramatic MBPT
2. Hamiltonian partitioning Epstein-Nesbet Moller-Plesset
3. Hamiltonian approximation ~CNDO/2 CNDO/2 and INDO
4. Basis set of HAOs Del Re method EMOA method
5. Basis set of SLMOs optimization of bond- solution of modified
polarities Roothaan equations
6. Applications a) only closed shell systems  also open shell systems
(UHF approach)
b) only elements H—CI elements H—Br

(including transition metals)
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Appendix A:

Modified Roothaan Equations for Strictly Localized Molecular Orbitals

In the general matrix notation, the column vector of hybrid atomic orbitals, ¥,
is transformed into a column vector of strictly Jocalized molecular orbitals, @*, as:

o = By (38)

(index » designes a- or B-SLMOSs’ set in the unrestricted open shell approach).
In all rows and columns of the LCHAO coefficient matrix B* only two elements
are non-zero. Thus, the elements of column vectors #* and ¥ can be arranged in such
a way, that the matrix B* is a block-diagonal

B} 0 0
0 B}..O ..

B = i (39)
00 B

A 2 x 2 block B} combines a pair of HAOs into a pair of SLMOs: one bonding
SLMO, |i), and one antibonding SLMO, |i*), associated with i-th covalent bond.
For a lone lobe (usually occupied with an electron pair) the block B} contains from
the single element with the unity value.

In order to obtain SCF equations for matrices B}, it is necessary to introduce
some approximations into well-known Roothaan equations )

F(B*)' = s(B})' E*, (40)

which are fulfiled for orthonormal canonical MOs expanded into fixed basis of one-
centric functions ¥. In Eq. (40), ¢

“Fv = <] Fld> = <ul B> +
+2 (P + PPyo) Cuh | vo) — *PyCud | ovd} (40

is the matrix element of one-electron effective Fock operator in HAOs’ basis;

Spe = u|v> (42)

is an element of the overlap integral matrix S and E* is the diagonal matrix of one-
electron orbital energies ¢}'. The charge-density (bond-order) matrix P* is defined as
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P* = (B*F w*B* (43)
where W* is the diagonal matrix of MOs’ occupation numbers with diagonal ele-
ments equal to 1 or 0. Multiplying Eq. (40) from the left side by matrix B*, a form
of Hartree-Fock equations is obtained

F* = PE*, (44)

where ™ is the matrix of elements of Fock operator in the basis of MOs. The MOs’
overlap integral matrix can be written in the form

Fr0o 0 L\ [0 A, A
0 5.0 .. A5 0 A% .

F o= e (45)
0 0 ..o A% 45 ... 0

In the case of SLMOs, &% is the 2 x 2 block of overlap integrals between bonding
and antibonding SLMO, which are associated with the same i-th bond. They, both
can be chosen to be orthonormal: &} = I. The symbol 4}; denotes a 2 x 2 block
of overlap integrals of SLMOs, which are associated with different i-th and j-th
bond and which have small values (of order ~0-1), in the general case. As a con-
sequence of the complete neglection of elements 47;, Eq. (44) is factorized:

ij*
F1 = SE, (46)
or

( <i| Fliy i) Fji*> ) _ (e‘ 0 ) (47)

G| Fliy <i*| Flixy) — \o &F

Eq. (47) represent the Hartree-Fock equations for SLMOs, where the non-ortho-
gonality of SLMOs is neglected. Similarly, a form of modified Roothaan equations
for the coefficient matrices BY easily is obtained:

Fi(BY)T = S,(B)" Ef #3)
with the following simple solutions:
ef =41 - (SwP1 7 {(Fp + Fi, — 2FLS,) £
+ [(Fi — PO + 4(F — FSi) (Fi — LS, (#9)
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b = (G* + 2GS, + 1)7172 (50)
- 6%, (51)
where
G =S —Fi (52)
F:u - Er

In Eqgs (49)— (52), the lower eigenvalue &} (with the negative sign of the discriminant)
corresponds to the bonding SLMO and the second one to the antibonding SLMO.
As B* is a block-diagonal matrix in the case of SLMOs, the matrix P* defined by
Eq. (42) also must take the block-diagonal form. Thus, the matrix elements of the
Fock operator defined by Eq. (40) can be still simplified.

Appendix B:

The Electronic Energy Terms up to the Third Order of MBPT
(i) Closed shell system ‘

EP = (Gl + o) 3
E® = 22 vﬁzm‘(Fh,)2/Dia (54)
B2 = :2’0; | abdc i | ab| iy (53)
B =25 % FulDu(% FuFalDic =3 Pkl D) (59

virg

EQ), = 22" Z(U | abd¢/ Diap[FiaFs6(3{Pse + 1/Dy) ~
- kZ(2<ij | kb) Fio/ Dyo + <kj| ab) FiyfDyap) +
vira
+ 2 (24d | ab) FioDyg + <ij | €b) FoeDigyy)] (57)

Collection Czechosiov. Chem. Commun. [Vol. 44] [1979]
f



Hamiltonian Approximations in the Modified PCILO Method

3067

Ca Vira

EQ), = z Z(lJ || ab)¢f Diyj %

x [zd(ab | ed) Ced | 3| Dyega + kic:(ab | kB> Ckl | 5[ Dygre +

+23 Y (Ckal] eide Ceb | 3] Duap

— kb | ic) Cac | kjy[Dyaye — Cka | ciy (be | kid|Desye)] -

(if) Open shell system (UHF approach)

a,p 0ccy
EQP =33 (<D + &)

a,B oce, virs

Eln=2 ¥ X (FL)/DL

® s

a,B OCCy Vil 0CCy Vil

ER, =3Y, ¥ X (X Z<‘J | ab>3/Dieye +

® in Ay I b

25 S| aby(D + D)}

in by

«,B 0CCx Viry occy
50 = 35 S DAY P 0% — L FaFa/DR)

% w8k

B occu Vire occy Vi

B, =35 Y > z“<u | ab>al D[ FiaF (3D +

% ix By

I/DTA) -

~ S | kb Fr Dty + $<Ki | abda Fif D) +
kx

+ 1(¢eT | aboa FEIDE + 53 | eb>a Fif D] +

<5 5| av(01, + D) (FEFHE/DR + 407 -

-2 z [<ij | kb Feaf D + 4<Ki | ab) Fi[(D& + D})] +
+ 22 [K¢j|ab) Fi. DY + <ij | b F; DI}
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3
EQ, =

\B OCCy Vify 0CCy Vify

+ &kZl ab " kipa kI " ij>a/Diars +

oCCu Viry
+ kZ Y <ic || akda <Kj | cb)alDieyp +
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In Eqs (53)—(64), x is the spin-index (¢ or B); n designes the complementary spin-
index with respect of x, which is defined as: n(x) = fand #(8) = «; occ, and occ, are
the occupied orbitals; vir, and vir, are the unoccupied (virtual) orbitals. The other
symbols are defined in the main text.

If the CNDO/2 Hamiltonian approximation on the s—p valence basis of AOs
is applied, the large simplification of the electronic energy terms is obtained; only
charge densities |ii), |ii*) and |i*i*) contribute. For example, for closed shell systems
following formulae have been derived:

ocCy

= Z(H.. + &) + Z (Hyuo + &0)

n=2% % (Hi)Die

(65)

(66)
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i

+ 4G | %) — (R *iY) for i, ¥, K e vir, ;

where

Hy; = (1~ &) <i| hlj>.
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In Eqs (65)—(70) only the restriction that bonding SLMOs are occupied is used;
some antibonding SLMOs can be occupied, too. If the restriction, that antibonding,
SLMOs are unoccupied is considered, the formulae firstly derived by Kvasnitka®®
for the second-order correction to the energy can be obtained. Finally, notice, that
the formula (70) for the third-order correlation energy differs from analogous term
published in? by simple replacing the Epstein-Nesbet denominator with the Moller—
—Plesset one. Therefore, a simple one-to-one correspondence between the original
formulation of the PCILO method and the present modified PCILO approach.
does not exist.
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